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Figure 1: The Gaggle UI allows people to interactively navigate a model space to support interactive classification and ranking of
data items. Users can create labels, drag and drop data items into various class labels to specify their subjective preferences to
construct classification and ranking models.

ABSTRACT

Recent visual analytics systems make use of multiple machine learn-
ing models to better fit the data as opposed to traditional single,
pre-defined model systems. However, while multi-model visual ana-
lytic systems can be effective, their added complexity adds usability
concerns, as users are required to interact with the parameters of
multiple models. Further, the advent of various model algorithms
and associated hyperparameters creates an exhaustive model space
to sample models from. This poses complexity to navigate this
model space to find the right model for the data and the task. In
this paper, we present Gaggle, a multi-model visual analytic system
that enables users to interactively navigate the model space. Further
translating user interactions into inferences, Gaggle simplifies work-
ing with multiple models by automatically finding the best model
from the high-dimensional model space to support various user tasks.
Through a qualitative user study, we show how our approach helps
users to find a best model for a classification and ranking task. The
study results confirm that Gaggle is intuitive and easy to use, sup-
porting interactive model space navigation and automated model
selection without requiring any technical expertise from users.

Index Terms: Human-centered computing—Visualization—
Classification and ranking model visualization—Mixed initiative
systems;

1 INTRODUCTION

Visual analytic (VA) techniques continue to leverage machine learn-
ing (ML) to provide people effective systems for gaining insights into
data [28]. Systems such as Interaxis [39] help domain experts com-
bine their knowledge and reasoning skills about a dataset or domain
with the computational prowess of machine learning. These sys-
tems are traditionally designed with a pre-defined single ML model
that has a carefully chosen learning algorithm and hyperparameter
setting. Various combination of learning algorithms and hyperparam-
eters give rise to a vast number of different model types (see Table 1).
These different models constitute an exhaustive model space from
which unique models can be sampled using a distinct combination of
a learning algorithm and associated hyperparameters. For example,
support vector machine (SVM) models have many options for kernel
functions (i.e., linear, poly or radial) and hyperparameters (i.e., C
(regularization parameter), γ (kernel coefficient), etc.).

When a model is correctly chosen for the phenomena, task, data
distribution, or question users try to answer, existing VA techniques
can effectively support users in exploration and analysis. However,
in cases where the right model (or optimal model, as desired by
the user) to use for a problem is not known a priori, one needs to
navigate this model space to find a fitting model for the task or the
problem. To combat this, recent VA systems use multiple ML models
to support a diverse set of user tasks (e.g., Regression, Clustering
, etc. [15, 17, 22, 69]). For example, the VA system Clustervision
[42] allows users to inspect multiple clustering models and select

one based on quality and preference. Similarly, Snowcat [16] allows
inspecting multiple ML models across a diverse set of tasks, such
as classification, regression, time-series forecasting, etc. However,
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these multi-model systems are often more complex to use compared
to single-model alternatives (e.g, in Clustervision users need to be
well-versed with cluster model metrics and shown models.) We
refer to this complex combination of parameter and hyperparameter
settings as model space, as there are a large number of models that
can be instantiated in this hyperdimensional space. Further, the
interactive exploration of different parameter and hyperparameter
combinations can be referred to as model space navigation. Our
definition of model space is related to the work by Brown et al. [14]
where they presented a tool called ModelSpace to analyze how the
model parameters have changed over time during data exploration.

In this paper we present Gaggle, a visual analytic tool that
provides the user experience of a single-model system, yet leverages
multiple models to support data exploration. Gaggle constructs
multiple classification and ranking models, and then using a
bayesian optimization based hyperparameter selection technique,
automatically finds a classification and ranking model for users
to inspect, thus simplifying the search for an optimal model as
preferred by the user. Furthermore, our technique utilises simple
user interactions for model space navigation to find the right model
for the task. For example, users can drag data items into specific
classes to record classification task’s user preferences. Similarly,
users can demonstrate that specific data items should be higher or
lower in rank within a class by dragging them on top of each other.

Gaggle uses ML to help users in data exploration or data structur-
ing tasks, e.g, grouping data in self-defined categories, and ranking
the members of the group based on their representativeness to the
category. For example, a professor may want to use a tool to help
categorize new student applications in different sets, and then rank
the students in each set. Similarly, a salesman may want to cluster
and rank potential clients in various groups. These problems fall
under classification tasks in ML; however, unlike a conventional
classification problem, our use case specifically supports interactive
data exploration or data structuring, the models constructed are not
meant to predict labels for unseen data items in future. Using this
workflow, we expect our technique guards against possible model
overfitting incurred due to adjusting the models to confirm to spec-
ified user preferences. Furthermore, Gaggle addresses a common
problem of datasets that either lack adequate ground truth, or do not
have it [54, 67, 80]. To resolve this problem, Gaggle allows users
to iteratively define classes and add labels. On each iteration, users
add labels to data items and then build a classifier.

We conducted a qualitative user study of Gaggle to collect user
feedback on the system design and usability. The results of our
study indicate that users found the workflow in Gaggle intuitive, and
they were able to perform classification and ranking tasks effectively.
Further, users confirmed that Gaggle incorporated their feedback
into the interactive model space navigation technique to find the right
model for the task. Overall, the contributions of this paper include:
• A model space navigation technique facilitated by a Bayesian

optimization hyperparameter tuning and automated model
selection approach.

• A VA tool Gaggle, that allows interactive model space navigation
supporting classification and ranking tasks using simple
demonstration-based user interactions.

• The results of a user study testing Gaggle’s effectiveness to
interactively build classifiers and ranking models.

2 RELATED WORK

2.1 Interactions in Visual Analytics
Interactive model construction is a flourishing avenue of research. In
general, the design of such systems makes use of both explicit user in-
teractions such as specifying parameters via graphical widgets (e.g.,
sliders), or implicit feedback including demonstration-based interac-
tions or eye movements to provide guidance on model selection and
steering. These types of systems build many kinds of models, includ-

ing classification [7, 32], interactive labeling [18], metric learning
[15], decision trees [72], and dimensional reduction [27, 39, 43].

For example, Jeong et al. presented iPCA to show how directly ma-
nipulating the weights of attributes via control panels helps people
adjust principal component analysis [36]. Similarly, Amershi et al.
presented an overview of interactive model building [4]. Our work
differs from these works in two primary ways. First, our technique
searches through multiple types of models (i.e., Random Forest
models with various hyperparameter settings for classification and
ranking tasks). Second, our tool interprets user interaction as feed-
back on the full hyperparameter space using bayesian optimization,
causing hyperparameter tuning directly changing model behavior
in parallel. Stumpf et al. conducted experiments to understand the
interaction between users and machine learning based systems [65].
They found that user feedback included suggestions for re-weighting
of features, proposing new features, relational features, and changes
to the learning algorithm. They showed that user feedback has the
potential to improve ML systems, but that learning algorithms need
to be extended to assimilate this feedback [64].

Interactive model steering can also be done via demonstration-
based interaction. The core principle in these approaches is that
users do not adjust the values of model parameters directly, but
instead visually demonstrate partial results from which the models
learn the parameters [13, 15, 25–27, 31, 44]. For instance, Brown et
al. showed how repositioning points in a scatterplot could be used
to demonstrate an appropriate distance function [15]. It saves the
user the hassle to manipulating model hyperparameters directly to
reach their goal. Similarly, Kim et al. presented InterAxis [39],
which showed how users could drag data objects to the high and low
locations on both axes of a scatterplot to help them interpret, define,
and change axes with respect to a linear dimension reduction tech-
nique. Using this simple interaction, the user can define constraints
which informed the underlying model to understand how the user
is clustering the data. Wenskovitch and North used the concept of
observation level interaction in their work by having the user define
clusters in the visualized dataset [76]. By visually interacting with
data points, users are able to construct a projection and a clustering
algorithm that incorporated their preferences. Prior work has shown
benefits from directly manipulating visual glyphs to interact with
visualizations, as opposed to control panels [11, 26, 38, 46, 56, 59].

Active Learning (AL) appears similar to techniques used in
Gaggle, yet has a few distinct differences. AL is often used in
supervised learning problems (e.g., classification) where adequate
annotations are not available in the training data, thereby the
algorithm selectively seeks labels for a set of informative training
examples [35, 48, 53, 81]. Standard AL processes assumes that an
oracle (usually a user) can provide accurate labels or annotations
for any queried data sample [19, 61, 70]. From a UI perspective,
the work presented in this paper aligns closely with both AL and
demonstration-based techniques. Gaggle’s interaction design lets
users manipulate the visual results of the models, interactively add
labels to the training set to incrementally navigate the model space.
However, the data items users label are not selected by the system,
but by users during exploration.

2.2 Multi-Model Visual Analytic Systems

Current visual analytics systems focus on allowing the user to steer
and interact with a single model type. However, recent work has ex-
plored the capability for a user to concurrently interact with multiple
models. These systems implement a multi-model steering technique
which facilitates the adjustment of model hyperparameters to in-
crementally construct models that are better suited to user goals.
For instance, Das et al. showed interactive multi-model inspec-
tion and steering of multiple regression models [22]. Hypertuner
[69] looked at tuning multiple machine learning models’ hyperpa-
rameters. Xu et al. enabled user interactions with many models,
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Table 1: User tasks, learning algorithms, hyperparameters, and pa-
rameters in Gaggle.

Tasks Learning
Algorithm

Hyper-
parameters Parameters

Classif-
ication

Random
Forest

Criteria
Max Depth
Min Samples

Attribute Entropy,
Information Gain

Ranking Ranking
Random Forest

Criteria
Max Depth
Min Samples

Attribute Entropy,
Information Gain

but instead of each model, users interacted with ensemble models
through multiple coordinated contextual views [77]. Dingen et al.
built RegressionExplorer that allowed users to select subgroups and
attributes (rows and columns) to build regression models. How-
ever, their technique does not weight the rows and columns; they
only select 0 or 1 [23]. Mühlbacher et al. showed a technique to
rank variables and pairs of variables to support multiple regression
model’s trade-off analysis, model validation, and comparison [47].
HyperMoVal [32] addressed model validation of multiple regression
models by visualizing model outputs through multiple 2D and 3D
sub-projections of the n-dimensional function space [52].

Kwon et al. [42] demonstrated a technique to visually identify
and select an appropriate cluster model from multiple clustering
algorithms and parameter combinations. Clusterophile 2 [17] en-
abled users to explore different choices of clustering parameters
and reason about clustering instances in relation to data dimensions.
Similarly, StarSpire from Bradel et al. [13] showed how semantic
interactions [26] can steer multiple text analytic models. While
effective, their system is scoped to text analytics and handling text
corpora at multiple levels of scale. Further, many of these systems
target data scientists, while Gaggle is designed for users who are
non-experts in ML. In addition, our work focuses on tabular data. It
supports interactive navigation of a model space within two classes
of models (classification and ranking) by tuning hyperparameters of
each of these types of models.

2.3 Human-Centered Machine Learning

Human-Centered Machine Learning focuses on how to include peo-
ple in ML processes [4–6, 58]. A related area of study is the modifi-
cation of algorithms to account for human intent. Sacha et al. showed
how visual analytic based processes can allow interaction between
automated algorithms and visualizations for effective data analysis
[58]. They examined criteria for model evaluation on an interactive
supervised learning system. The found users evaluate models by
conventional metrics, such as accuracy and cost, as well as novel cri-
teria such as unexpectedness. Sun et al. developed Label-and-Learn,
allowing users to interactively label data [66]. Their goal was to
allow users to determine a classifier’s success and analyze the perfor-
mance benefits of adding expert labels [66]. Many researchers have
emphasized the knowledge generation process of users performing
labeling tasks [9, 10, 24]. Ren et al. explained debugging multiple
classifiers using an interactive tool called Squares [55].

Holzinger et al. discussed how automatic machine learning meth-
ods are useful in numerous domains [33]. They note that these
systems generally benefit from large static training sets, which ig-
nore frequent use cases where extensive data generation would be
prohibitively expensive or unfeasible. In the cases of smaller datasets
or rare events, automatic machine learning suffers from insufficient
training samples, which they claim can be successfully solved by in-
teractive machine learning leveraging user input [33, 34]. Crouser et
al. further formalize this concept of computational models fostering
human and machine collaboration [20].

2.4 Model Space Navigation
We looked at notable works from the literature which supports
model space navigation or visualization to understand the current
state better. Sedlmair et al. [60] defined a method of variation
of model parameters, generating a diverse range of model outputs
for each such combination of parameters. This technique called
visual parameter analysis investigated the relationship between
the input and the output within the described parameter space.
Similarly, Pajer et al. [49] showed a visualization technique for
visual exploration of a weight space which ranks plausible solutions
in the domain of multi-criteria decision making. However, this
technique does not explicitly allow navigating models by adjusting
hyperparameters but instead varies weightings of user-defined
criteria. Boukhelifa et al. explored model simulations by reducing
the model space, then presenting it in a SPLOM and linked views
[12]. While Gaggle demonstrates an implicit parameter space

exploration, this implements an explicit parameter space.

2.5 Automated Model Selection
Model building requires selecting a model type, finding a suitable
library, and then searching through the hyperparameter spaces for
an optimal setting to fit their data. For non-experts, this task can
amount to many iterations of trial and error. In order to combat
this guessing game, non-experts could use automated model
selection tools such as AutoWeka [41, 68], SigOpt [50], HyperOpt
[8, 40], Google Cloud AutoML [45], and AUTO-SKLEARN [30].

These tools execute intelligent searches over the model space and
hyperparameter spaces, providing an optimal model for the given
problem type and dataset. However, these tools are all based on
optimization of an objective function which takes into account
only features or attributes that are quantifiable, often ignoring user
feedback. Instead, our work explores how to incorporate domain
expertise into an automated model selection process supported by
interactive navigation of the model space.

3 USAGE SCENARIO

Gaggle allows users to assign data points to classes and then partially
order data items within the classes to demonstrate classification and
ranking. Next, the system responds by constructing a model space,
then samples multiple variants of classification and ranking models
from it. Gaggle searches various sub-regions of the model space to
automatically find an optimal classification and ranking model based
on model performance metrics (explained later in the paper). Users
can iterate using Gaggle by triggering it to construct new models. In
this process users provide feedback to the system through various
forms of interaction (e.g., dragging rows, assigning new examples
to the class labels, correcting previous labels, etc.). This process
continues until the user is satisfied with the model, meaning that
the automatically selected model has correctly learned the user’s
subjective knowledge and interpretation of the data (Figure 2). We
present a usage scenario to demonstrate the type of problem being
solved and the general workflow of the tool.
Problem Space: Imagine Jonathan runs a sports camp for baseball
players. He has years of experience in assessing the potential of
players. He not only understands which data features are important
but also has prior subjective knowledge about the players. Jonathan
wants to categorize, and rank the players into various categories
(“Best Players”, “In-form Players”, and “Struggling Players”) based
on their merit.
User-Provided Labeling: Jonathan starts by importing the dataset
of baseball players in Gaggle, data publicly available from Open-
ML [73]. The data contains 400 players (represented as rows)
and 17 attributes of both categorical and quantitative types. The
dataset does not have any ground truth labels. He sees the list of all
the players in the Data Viewer (Figure 3-B). He creates the three
classes mentioned above and drags respective players in these bins
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or classes to add labels. Knowing Carl Yastrzemski as a very highly
rated player, he places him in the “Best Players” class. Gaggle shows
him recommendations of similar players for labeling (Figure 3).
Automated Model Generation: Jonathan clicks the build model
button from the Side Bar (see Figure 1-F). Based on Jonathan’s
interaction so far, Gaggle constructs the model space comprising
of multiple classification and ranking models. Gaggle runs its opti-
mizer to navigate the model space based on Jonathan’s interaction
to automatically find the best performing model, out of an exhaus-
tive search of over 200 random forest models. When the system
responds, he finds player Ernie Banks is misclassified. He places
this player in the “In-form Players” class instead of the “Struggling
Players”. He moves Ernie Banks and similar other misclassified
players to the correct class and asks Gaggle to find an optimal model
that takes his feedback into account.

Gaggle updates its model space based on the feedback provided
by Jonathan, and samples a new classification and ranking model.
Gaggle updates the Data Viewer with the optimal model’s output.
Jonathan reviews the results to find that many of the previously
misclassified players are correctly labeled and pins them to ensure
they do not change labels in future iterations. Next, he looks at the
Attribute Viewer (Figure 1-B) in search of players with high “batting
average” and “home runs”. He moves players that match his criteria
into respective labels (e.g., placing Sam West and Bill Madock in the
“In-Form Players” class). After Gaggle responds with a new optimal
model, he verifies the results returned by the model in the interacted
row visualization (Figure 1-C). He accepts the classification model
and moves on to rank the players within each class.

Jonathan specifies examples for the ranking model by dragging
players in each class up or down. After showing a set of relative rank-
ing orderings between data instances (green highlights show inter-
acted items), he iterates to check the full data set, as ranked by Gag-
gle. He moves player Norm Cash and Walker Cooper to the top of the
“struggling players” class, and moves player Hal Chase in the “best
players” class. Observing that some data items are not ranked as ex-
pected, he further specifies other ranking examples, and triggers Gag-
gle to construct a new ranking model. Finally, Jonathan finds Gaggle
ranked most of the players at the correct spot. In this scenario, we
showed how Gaggle helps a domain expert navigate the model space
to classify and rank data items solely based on his prior subjective do-
main knowledge, following the iterative process shown in Figure 2.

While this use case presented how Gaggle could be used by do-
main experts with a specific dataset, there are other datasets which
can be utilised with Gaggle to perform classification and ranking.
For example, the drug consumption dataset [29], contains person-
ality measurements (e.g., neuroticism, extraversion, openness to
experience, agreeableness, and conscientiousness), level of educa-
ton, age, gender, ethnicity, etc. of 1885 respondents. Using this
dataset a narcotics expert/analyst can classify and rank the respon-
dents into one of the seven class categories (in relation to drug use),
namely: “Never Used”,“Used over a Decade Ago”, “Used in Last
Decade”, “Used in Last Year”, “Used in Last Month”, “Used in Last
Week”, and ”Used in Last Day”. They can also create new classes
and rank the respondents based on the attribute values and their prior
knowledge. Similarly Gaggle can support a loan officer to use the
credit card default payment dataset [79] to decide on approval of
loan applications by classifying and ranking the applicants.

4 GAGGLE: SYSTEM DESCRIPTION

The overarching goal driving the design of Gaggle is to let people
interactively navigate a model space of classification, and ranking
models in a simple and usable way. More specifically, the design
goals of Gaggle are:
Enable interactive navigation of model space: Gaggle should
allow the exploration and navigation of the hyper-dimensional model
space for classifiers and ranking models.

Figure 2: The gray box on the top shows the model space from
which candidate models are sampled and ranked based on metrics
derived from user interactions, ultimately selecting and showing a
single model.

Support direct manipulation of model outputs: Model outputs
should be shown visually (lists for ranking models, and bins for clas-
sifiers). User feedback should directly adjusting data item ranking
or class membership, not adjusting model hyperparameters directly.
Generalize user feedback across model types: User feedback to
navigate the model space should not be isolated on any specific type
of model. For instance, providing visual feedback to the classifica-
tion of data points might also adjust the ranking of data items.
Leverage user interaction as training data: User feedback on
data points should serve as training data for model creation. Data
items interacted with will serve as the training set, and performance
is validated against the remaining data for classification and ranking.

4.1 User Interface
Data Viewer: The main view of Gaggle is the Data Viewer, which
shows the data items within each class (Figure 1-A). Users can
add, remove, or rename classes at any point during data exploration
and drag data instances to bins to assign labels. Users can re-order
instances by dragging them higher or lower within a bin to specify
relative ranking order of items. Gaggle marks these instance with
a green highlight, see Figure 1-G. When Gaggle samples models
from the model space and finds an optimal model, the Data Viewer
updates the class membership and ranking of items to reflect the
models’ output. Our design decision to solve for a single model to
show at each iteration is to simplify the user interface by removing
a model comparison and selection step.
Attribute Viewer: Users can hover over data items to see attribute
details (Figure 1-B) on the right. Every quantitative attribute is
shown as a glyph on a horizontal line. The position of the glyph on
the horizontal line shows the value of the attribute in comparison
to all the other data instances. The color encodes the instance’s
attribute quality in comparison to all other instances (i.e., green,
yellow, and red encodes high, mid, and low values respectively).
Data Recommendations: When users drag data instances to differ-
ent bins, Gaggle recommends similar data instances (found using a
cosine distance metric), which can also be added (Figure 3 and 1-H).
This is to expedite the class assignment during the data exploration
process. The similarity is computed based on the total distance Da
of each attribute di of the moved data instance to other instances in
the data. Users can accept or ignore these recommendations.
Interacted Row Visualization: This view (Figure 1-C) shows the
list of all interacted data items. In addition, with color encoding it
shows correct label matches (shown in blue color) and incorrect label
matches(shown in pink color). Same is true for ranking (blue for
correct ranked order prediction as expected and pink for otherwise).
It shows how many constraints were correctly predicted.
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Figure 3: Gaggle’s recommendation dialog box.

User Interactions: Gaggle lets users give feedback to the system
to sample models in the next iteration, adjust model parameters and
hyperparameters, and allow users to explore data and gain insight.
• Assign class llabels: Users can reassign classes by dragging data

items from one class to another. They can also add or remove
classes. These interactions provide more constraints to steer the
hyperparameters of the classifier.

• Reorder items within classes: Users can reorder data items
within classes, (see Figure 1-G) to change their ranking. This
interaction helps users exemplify their subjective order of data
instances within classes. This feedback is incorporated as training
data for the ranking model.

• Pin data items: When sure of a class assignment of a data item,
the user can pin it to the respective class bin (see Figure 1-I). It
ensures that data item will always be assigned that class in every
subsequent iteration.

• Constrain classifier: When satisfied by the classifier, users can
constrain the last best classifier. It allows users to move on to
show ranking examples for Gaggle to focus on improving the
ranking model (Figure 1-C).

5 TECHNIQUE

Models: We define a model as a function f : X 7→ Y , mapping
from the input space X to the prediction space Y . We are concerned
primarily with semi-supervised learning models, in which we are
provided with a partially labeled or unlabeled training set Dtrain =
DU ∪DL, where DL is labeled data and DU is unlabeled data such
that if di ∈ DL, then di = (xi,yi), and if di ∈ DU , then di = (xi),
where xi are features and yi is a label. A learning algorithm A maps
a training set Dtrain to a model f by searching through a parameter
space. A model is described by its parameters θ , while a learning
algorithm is described by its hyperparameters λ . A model parameter
is internal to a model, where its value can be estimated from the
data, while model hyperparameters are external to the model.
Model Space: Varying the learning algorithm and the hyperparame-
ters creates a diverse set of new models. This space of every possible
combination of learning algorithms and hyperparameters forms a
high dimensional model space. The objective to find an optimal
model from this high-dimensional, infinitely large space without any
computational guidance or statistical methods is similar to finding a
needle in a haystack. Conventionally, ML practitioners/developers
navigate the model space using data science principles to test various
candidate models. They search for regions (sub-space of the model
space) to find optimal models. For instance, one can navigate the
model space by randomly sampling new models and testing their
performance in terms of accuracy (or other defined metrics) to find
a model that best suits the task.

Gaggle constructs a model space by sampling multiple random

Figure 4: The model ranking method uses Bayesian optimization
solver to rank candidate models from the model space.

forest models which takes a predefined list of hyperparameters (cri-
teria, max depth, and min samples to set a node as a leaf) within a
set domain range (see Table 1). While Gaggle uses a random forest
model for the system evaluation, the general optimization method
used is designed to work with other learning algorithms and hyperpa-
rameter combinations as well. For instance, Gaggle’s optimizer can
sample multiple SVM models using a set of chosen hyperparameters
such as C (regularization parameter), γ (kernel coefficient).

5.1 Interactive model space navigation

To facilitate interactive user feedback and navigation of the model
space, Gaggle uses a Bayesian optimization technique [51, 62]. This
navigation is initiated by randomly sampling models from the model
space as shown in Figure 5. Gaggle seeds the optimization technique
by providing: a learning algorithm A, a domain range Dr for each
hyperparameter, and the total number of models to sample n for both
classification and ranking models. Gaggle uses a Bayesian optimiza-
tion module that randomly picks a hyperparameter combination hp1,
hp2 and hp3. For example, a model M1 can be sampled by providing
“learning algorithm” = “random forest”, “criteria type” = gini, “max-
depth” = 30, and “min-samples-leaf” = 12. Likewise, the Bayesian
optimization module samples M1, M2, M3, M4 ... Mn models. For
each model, it also computes a score Si based on custom-defined
model performance metrics inferred from user interactions.

The Bayesian optimization module uses a Gaussian process to
find an expected improvement point in the search space (of hyperpa-
rameter values) over current observations. For example, a current
observation could be mapped to a machine learning model, and
its metric for evaluation of the expected probability can be pre-
cision score or cross-validation score. Using this technique, the
optimization process ensures consistently better models are sampled
by finding regions in the model space where better performing mod-
els are more likely to be found (see Figure 2). Next, the Bayesian
optimization module finds the model with the best score Si (see
Figure 5). Gaggle performs this process for both classification and
ranking models driven by user-defined performance metrics.
Classification Model Technique: Gaggle follows an unconven-
tional classifier training pipeline. As Gaggle is designed to help
users in data exploration using ML, and not to make predictions on
unseen data items, the applicability of conventional train and test
set does not apply. Gaggle begins with an unlabeled dataset. As the
user interacts with an input dataset D of n items, labels are added;
e.g., if the user interacts with e data items, they become part of the
training set for the classification model. The rest of the instances
n− e, are used as a test set to assign labels from the trained model.
If e is lower than a threshold value t, then Gaggle automatically
finds s similar data instances to the interacted items and places them
in the training set along with the interacted data items (s gets the
label from the most similar labeled data item in e). The similarity
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is measured by the cosine distance measure using the features of
the interacted samples. This ensures that there are enough training
samples to train the classifier effectively.

As users interact with more data instances, the size of the training
set grows, and test set shrinks, helping them to build a more robust
classifier. For each classifier, Gaggle determines the class probabil-
ities Pi j, representing the probability of data item i classified into
class j. The class probability is used to augment the ranking compu-
tation (explained below) as they represent the confidence the model
has over a data item to be a member of a said class. Gaggle’s inter-
active labeling approach has close resemblance to active learning
(AL) [78], where systems actively suggest data items users should
label. Instead, Gaggle allows users to freely label any data item in
D to construct a classifier. Furthermore, our technique incorporates
user feedback to both classify and rank data items.
Ranking Model Technique: Gaggle’s approach to aid interactive
navigation of the model space for the ranking task is inspired by
[37, 74]; which allows users to subjectively rank multi-attribute data

instances. However, unlike them, Gaggle constructs the model space
using a random forest model (a similar approach to [82]) to classify
between pairs of data instances Ri and R j. While we tested both of
these approaches, we adhered to random forest models owing to it’s
better performance with various datasets. Using this technique, a
model predicts if Ri should be placed above or below R j . It continues
to follow the same strategy between all the interacted data samples
and the rest of the data set. Further, Gaggle augments this ranking
technique with a feature selection method based on the interacted
rows. For example, assume a user moves Ri from rank Bi to B j
where Bi > B j (the row is given a higher rank) Our feature selection
technique checks all the quantitative attributes of Ri, and retrieves
m = 3 (the value of m is learnt by heuristics and can be adjusted)
attributes Q = Q1, Q2, and Q3 which best represents why Ri should
be higher in rank than R j . The attribute set Q are the ones in which
Ri is better than R j. If Bi < B j then Gaggle retrieves features that
supports it and follows the above protocol.

This technique performs the same operations for all the interacted
rows, and finally retrieves a set of features (Fs, by taking the common
features from each individually interacted row) that defines the user’s
intended ranked order. In this technique, if a feature satisfies one
interaction but fails on another, they are left out. Only the common
features across interacted items get selected. If the user specifies
incoherent data instances that leads to no or very small set in Fs,
Gaggle uses SK Learn’s K Best feature selection technique to fill
Fs. However, this may produce models which do not adhere to the
shown user interactions.

The set of selected features Fs are then used to build the random
forest model for the ranking task which computes a ranking score
Ei j (ith instance, of jth class) for each data item in D. Next, using
the class probabilities Pi j and the ranking score Ei j, Gaggle ranks
the data instances within each class. A final ranking score Gi j =
Ei j ∗Wr +Pi j ∗(1−Wr) is computed by combining the ranking score
Ei j of each data item in D and its class probability Pi j, retrieved
from the classifier, where Wr is the weight of the rank score and
1−Wr is the weight of the classification probability (see Figure 4).
The weights are set based on the model accuracy on various datasets.
Finally the dataset is sorted by Gi j. While the described technique
uses random forest models, in practice we have tested it with other
ML models such as SVM. Furthermore, the weights described here
are a set of hyperparameters that needs to be tuned based on the
chosen model and the dataset.

5.2 Model Selection

Gaggle selects an optimal model from the model space based on the
following metrics which describe each model’s performance (see
Figure 4). These are fed to the Bayesian optimization module to
sample better models:

Figure 5: Model space navigation approach using Bayesian optimiza-
tion to find the best performing model based on user-defined metrics.

Classification Metrics: Metrics used to evaluate the classifiers in-
clude: percentage of wrongly labeled interacted data instances Cu,
and cross-validation scores from 10-fold evaluation Cv (both range
between 0−1). Other metrics such as precision, F1-score, can be
specified based on the dataset and the user’s request. The final metric
is the sum total of these components computed as: Cu ∗Wu +Cv ∗Wv
where, Wu and Wv are the respective weights for each of the afore-
mentioned classification metric components. Different weight values
were tested during implementation and testing. We chose the set of
weights which led to the best gain in model accuracy.

Ranking Metrics: To evaluate models for the ranking task, Gaggle
computes three ranking metrics based on the absolute distance from
a data instance’s position before and after a said model Mi is applied
to the data. Assume a row r is ranked q when the user interacted with
the data. After applying model Mi to the data, the row r is at position
p, then the absolute distance is given by dr = abs(p− q). The
first ranking metric computes the absolute distances only between
the interacted rows. It is defined as Zu = (∑r∈I dr)/l, where row
r is in the set I of all l interacted rows. The second metric, Dv,
computes the absolute distance between the interacted rows I and
the immediate h rows above and below of each interacted rows. It
is defined as Zv = (∑r∈Il

(∑t∈Hh
dt r)/h)/l where row r is in the set

I of all l interacted rows, H is the set of h rows above and below
of each interacted row I. This metric captures if the ranked data
item is placed in the same neighborhood of data items as intended
by the user. In Gaggle, h defaults to 3 (but could be adjusted). The
third metric, Dw, computes the absolute distance between all the
instances of the data before and after a model is applied. defined
as Zw = (∑r∈Dn

dr)/n where row r is in the set Dn of all n rows. A
lower distance represents a better model fit.

The final ranking metric is computed by the weighted summation
of these metrics defined as Ztotal = Zu ∗Wu + Zv ∗Wv + Zw ∗Ww,
where, Wu, Wv, Ww are the weights for the three ranking metrics.
Weights were tested during implementation and chosen based on
the set of weights which gave the best model accuracy. While Zu
captures user-defined ranking interactions in the current iteration, Zv
and Zw both ensure that user’s progress (over multiple interations)
is preserved in ranking the entire dataset. Furthermore, we used
these metrics instead of other ranking metrics such as, normalized
discounted cumulative gain (NDCG) [75], as the latter relies on
document relevance, which in this context seemed less useful to
capture user preferences. Also, NDCG is not derived from a ranking
function, instead relies on document ranks [71]. Another metric
called Bayesian personalized ranking (BPR) by Rendle et al. [57]
allows ranking a recommended list of items based on users implicit
behavior. However, unlike the use case supported by BPR, our work
specifically allows users to rank the data subjectively. Furthermore,
unlike BPR, our metric also takes into account negative examples,
(i.e., when a data item is ranked lower than the rest).
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6 USER STUDY

We conducted a user study to evaluate Gaggle’s automatic model
space navigation technique to support the classification and ranking
tasks. Our goal was to get user feedback/responses to Gaggle’s
system features, design, and workflow. Further, collecting observa-
tional data, we wanted to know if our technique helps them to find
an optimal model satisfying their goal. We designed a qualitative
controlled lab study where participants used Gaggle to perform a
set of predefined tasks. In the end, they gave feedback to the system
design, usability, and workflow.

6.1 Participants
We recruited 22 graduate and undergraduate students (14 male). The
inclusion criteria were that participants should be non-experts in ML,
and have adequate knowledge of movies and cities (datasets used for
the study). None of the participants used Gaggle prior to the study.
We compensated the participants with a $10 gift card. The study
was conducted in a lab environment using a laptop with a 17-inch
display and a mouse. The full experiment lasted 60-70 minutes.

6.2 Study Design
Participants were asked to complete 4 tasks: multi-class classifica-
tion of items (3 classes), ranking the classified data items, binary
classification of items, and ranking the classified data items. Partic-
ipants performed the above 4 tasks on 2 datasets, Movies [3] and
Cities [2]. To reduce learning and ordering effects, the order of the
datasets and the tasks were randomized. In total, each participant
performed 8 tasks, 4 per dataset. We began with a practice session
to teach users about Gaggle. During this session, participants per-
formed 4 tasks, which took 15 minutes, and included multi-class
classification and ranking, and binary classification and ranking on
the Cars dataset [1]. We encouraged participants to ask as many
questions as they want to clarify system usability or interaction
issues. We proceeded to the experimental sessions only when partic-
ipants were confident with using Gaggle.

Participants were asked to build a multi-class classifier first. This
was followed by a binary classification and ranking task on the same
dataset. Then they repeat the same set of tasks on the other dataset.
The movies data had 5000 items, with 11 attributes, while the cities
dataset had 140 items with 45 attributes. We asked participants
to create specific classes for each dataset. For the Movies dataset
multi-class labels were sci-fi, horror/thriller, and misc, and fun-
cities, work-cities, and misc for the Cities dataset. For the binary
classification task, the given labels were popular and unpopular
(Movies dataset), and western and non-western (Cities dataset).

6.3 Data Collection and Analysis
We collected subjective feedback and observational data through
the study. We encouraged participants to think aloud while they
interacted with Gaggle. During the experiment sessions, we
observed the participants silently in an unobtrusive way to not
interrupt their flow mitigating Hawthorne and Rosenthal effects. We
audio and video recorded every participant’s screen. We collected
qualitative feedback through a semi-structured interview comprising
of open-ended questions at the end of the study. We asked questions
such as What were you thinking while using Gaggle to classify
data items?, What was your experience working with Gaggle?,
etc. Furthermore, after each trial per dataset, we asked participants
to complete a questionnaire containing likert scale questions. For
example, we asked: (1) On a scale of 1 to 5, how successfully the
system was learning based on interactions provided? (1 is randomly,
5 is very consistently), (2) On a scale of 1 to 5, how satisfied are
you with the classification model output? (1 is not satisfied, 5 is
very satisfied), (3) On a scale of 1 to 5, how satisfied are you with
the ranking model output? (1 is not satisfied, 5 is very satisfied).
Here satisfaction means, how well the underlying model adhered to

Figure 6: User preferences (averaged over datasets) for the four tasks.

the users demonstrated interactions. Please refer the supplemental
material (1) to know about the study questionnaire.

6.4 User Preferences
We collected user preference rating for all four tasks (see Figure 6).
The scores were between 1−5 (1 meaning least preferred, 5 meaning
highly preferred). The average rating of Gaggle for multi-class
classification with the ranking task was 3.97. The average rating
of Gaggle for the binary classification with the ranking task was
4.17. Though users approved Gaggle’s simplicity to allow them to
classify and rank data samples, they seemed to prefer Gaggle for the
binary classification and ranking task owing to higher accuracy and
consistently matching users interpretation of the data.

6.5 Model Switching Behavior
For all participants, we collect log data to track how models were
selected when users interactively navigated the model space. We
sought to understand how model hyperparameters switch during
usage. For participants using the Movies dataset (multi-class classifi-
cation task) the max-depth hyperparameter changed values (ranging
from 3 to 18). Similarly, for the Cities dataset (multi-class classi-
fication task) the hyperparameter Criteria ranged from entropy to
gini. The min-samples hyperparameter varied within the range of 5
to 36 for both datasets. For the binary classification task, max-depth
ranged from 4 to 9 for both datasets. Also we noticed the criteria
hyperparameter switching from gini to entropy for both datasets
for the binary classification task. On average the hyperparameters
switched M = 9.34 [7.49,11.19] times to support the multi-class
classification and ranking task, while the average change was M =
5.41 [4.89,5.93] for binary classification and ranking task. These
results indicate that the interactive navigation of the model space
technique found new models as participants interacted with Gaggle.

6.6 Qualitative Feedback
Drag and drop interaction: All the participants liked the drag and
drop interaction to demonstrate examples to the system. “I like the
drag items feature, it feels very natural to move data items around
showing the system quickly what I want.” (P8). However, with a long
list of items in one class, it can become difficult to move single items.
P18 suggested, “I would prefer to drag-drop a bunch of data items
in a group.”. In future, we will consider adding this functionality.
Ease of system use: Most participants found the system easy to
use. P12 said “The process is very fluid and interactive. It is
simple and easy to learn quickly.” P12 added “While the topic of
classification and ranking models is new to me, I find the workflow
and the interaction technique very easy to follow. I can relate to
the use case and see how it [Gaggle] can help me explore data in
various scenarios.”
Recommended items: Recommending data while dragging items
into various labels helped users find correct data items to label. P12
said “I liked the recommendation feature, which most of the time
was accurate to my expectation. However, I would expect something

1Data: https://gtvalab.github.io/projects/gaggle.html

https://gtvalab.github.io/projects/gaggle.html
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like that for ranking also.” P2 added “I found many examples from
the recommendation panel. I felt it was intelligent to adapt to my
already shown examples.”
User-defined Constraints: The interacted row visualization helped
users understand the constraints they placed on the classification
and ranking models. P14 said “This view shows me clearly what
constraints are met and what did not. I can keep track of the num-
ber of blue encodings to know how many are correctly predicted”.
Even though the green highlights in the Data Viewer also mark the
interacted data items, the Interacted Row View shows a list of all
correct/incorrect matches in terms of classification and ranking.
Labeling Strategy Few participants changed their strategy to la-
bel items as they interacted with Gaggle. They expected it might
confuse the system. However, to their surprise, Gaggle adapted
to the interactions and still satisfied most of the user-defined class
definitions. P17 said “In the movies data set, I was classifying sci-fi,
and thriller movies differently at first, but later I changed based on
recent movies that I saw. I was surprised to see Gaggle still got
almost all the expected labels right for non-interacted movies.”

7 DISCUSSION AND LIMITATIONS

Large Model Search Space: Searching models by combining dif-
ferent learning algorithms and hyperparameters leads to an extremely
large search space. As a result, a small set of constraints on the
search process would not sufficiently reduce the space, leading to
a large number of sub-constrained and ill-defined solutions. Thus,
how many interactions are considered optimal for a given model
space? In this work, we approached this challenge by using Bayesian
optimization for ranking models. However, larger search spaces may
pose scalability issues while too many user constraints may “over-
constrain” models leading to poor results.
Scalability: The current interaction design is intended to support
small to moderate dataset sizes. In the user study, we limited the
dataset size to understand how users interact with the system and
provide feedback to classification and ranking models. However,
the current design is not meant to handle cases when the data set
is large-ish, i.e., say twenty thousand data items. In the future, we
would like to address this concern by using Auto-ML based cloud
services coupled with progressive visual analytics [63].
Abrupt Model and Result Changes: As users interact to navigate
the model space, each iteration of the process may find substantially
different models. For example, users might find a random forest
model with ”criteria = gini” with depth of tree = 50” in one iteration
and ”criteria = entropy with depth of tree = 2” in the next iteration.
This may entail significant changes in the results of these models.
While these abrupt changes may not impact users greatly if they
are unaware of the model parameterizations, showing users what
changed in the output may ease these transition states.
Data Exploration using ML: Supporting data exploration while
creating models interactively is challenging. Users may change
their task definition slightly or learn new information about their
data. In these cases, user feedback may be better modeled by a
different model hyperparameterization compared to earlier in their
task. Updating the class definition or showing better examples im-
pacts the underlying decision boundary, which the classifier needs
to map correctly. For example, in earlier iterations, a linear decision
boundary might characterize the data. However, when new exam-
ples for classes are provided the decision boundary might be better
approximated using a polynomial or radial surface (see Figure 7). In
situations like this, Gaggle helps users by finding an optimal model
with new hyperparameter settings, without changing them manually.
ML practices and model overfitting: Conventionally classifiers
are trained on a training set, and then validated on a test set. Our
technique utilises the full dataset as input data, interacted data items
as training set, and the rest as test set. As users iteratively construct
classifiers, the training set grows in size and test set reduces. We used

Figure 7: As users gain more knowledge through exploration, they
may change their task, which might require different model hyperpa-
rameters. (Blue and orange points represent positive and negative
classes; white points represent data items not interacted with.)

this approach to account for user-specified preferences through itera-
tive interactions. Nevertheless, our process follows the conventional
ML principle, where the classifier training is done independently of
the test data. It only makes prediction on it after training, and Gaggle
enables users to inspect the results. However, a challenge systems
like Gaggle faces is model overfitting [21]. An overly aggressive
search through the model space might lead to a model which best
serves the user’s added constraints, but might underperform on an
unseen dataset. We believe that in use cases where ML is utilised
to organize or explore the data, the problem of overfitting is less
problematic, considering the constructed models are not meant to be
used for unseen data.
Active Learning and Gaggle: Gaggle’s approach to interactive
labeling is closely related to active learning (AL) strategies in ML,
in which systems request users to specify labels to data instances, on
which the model is less confident. However, Gaggle allows freedom
in terms of which items to label. AL on the other hand relies on
existing labels in the training data and only asks users to re-confirm
labels to certain data instances when needed (e.g, when the classifier
is less confident on the prediction of a data instance). While the
approach incorporated in Gaggle gives users more agency over the
process, this approach may be less suitable for larger datasets where
AL techniques could present items to users which need feedback.
Extending the Model Space navigation: The interactive model
space navigation technique that translates user interactions into
classification and ranking metrics can be extended to other ML
models. For example, other than a random forest model, we have
tested Gaggle with SVM model for the classification task and using
the RankSVM technique for the ranking task. Likewise, Gaggle
can be used with a boosting model for the classification task and
a weighted ranking model from each component model from the
boosted model for the ranking task.

8 CONCLUSION

In this paper, we present an interactive model space navigation
approach for helping people perform classification and ranking
tasks. Current VA techniques rely on a pre-selected model for
a designated task or problem. However, these systems may fail
if the selected model does not suit the task or the user’s goals.
As a solution, our technique helps users find a model suited to
their goals by interactively navigating the high-dimensional model
space. Using this approach, we prototyped Gaggle, a VA system
to facilitate classification and ranking of data items. Further, with
a qualitative user study, we collected and analyzed user feedback
to understand the usability and effectiveness of Gaggle. The study
results show that users agree that Gaggle is easy to use, intuitive,
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and helps them interactively navigate the model space to find an
optimal classification and ranking model.
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