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Evolution of natural life and subsequently selection of life forms is an interesting
topic that has been explored multiple times. This area of research and its
application has high relevance in evolutionary design and automated design
generation. Taking inspiration from Charles Darwin's theory, all biological
species were formed by the process of evolution based on natural selection of the
fittest (Darwin, n.d.) this paper explains exploratory research showcasing
semi-automatic design generation. This is realized by an interactive artificial
selection tool, where the designer or the end user makes key decisions steering
the propagation and breeding of future design artifacts. This paper, describes two
prototypes and their use cases, highlighting interaction based optimal design
selection. One of the prototypes explains a 2d organic shape creator using a
metaball shape approach, while the other discusses a spatial layout generation
technique for conceptual design.
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INTRODUCTION
Design teams work meticulously to find design op-
tions to satisfy client requirements and to propose
optimal solutions given project constraints. How-
ever, with the traditional design process, finding an
optimal design is limiting, as only a handful number
of design options can be explored. This leaves many
optimal and virtuous design options unexplored. In
addition, this prohibits the designer to explore new
design directions. On the other hand, with the cur-

rent prowess of modern machines, there are semi-
nal workwhich shows substantial design intelligence
can be added to the machine, to find an optimal
design from the vast design search space ( Adri-
aenssens, et al., 2014) (Anon., 2017) (Kai-Uwe & Ekke-
hard, 2001)

However, these algorithms are strictly objective,
requiring the designer to frame the constraints and
goals of the problem as an objective fitness function
i.e. find an optimal design which has low solar gain
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Figure 1
Diagram showing
the interactive
artificial selection
process, showing
how genotypes are
modified based on
selections made by
the user.

and high rainfall catchment area. However, in prac-
tice thedesignprocess and the choices that aremade
are often subjective (Thurston, 1990) (Raharjo, et al.,
2008) both by the designer and by the client. People
select designs because they like them for some fac-
tors, which often cannot be summarized or captured
in an objective function. Another limitation with cur-
rent design optimization techniques are that, it does
not involve the designer to steer the optimization
process in direction which they deem have potential.
Genetic algorithm techniques is time consuming to
compute, during which the designer has to wait till
the system responds with a list of ranked optimal de-
sign solutions. Many of the solutions or options eval-
uated are often useless for the designer as the user is
not able to intervene to guide themachine in amore
promising direction. Design goals often change dy-
namically, as designers explore alternatives early on,
in the design process. Not being able to steer the di-
rection of search is a serious limitation of the current
state of the art optimization processes. This makes
genetic algorithms limiting to find the true goal of
the designer. However, there are some examples of

interactive genetic algorithm techniques which have
explored capturing subjective nuances of the user, as
shown in the work of (Cho & Lee, 2002). However,
they face issues such as, difficulty to handle complex
models including lack of enough genetic operators
and user fatigue and uncertainty of decisionmaking.
Often these optimization models lack an adequate
explanation for the type of options they generate etc.

To this end, I took inspiration from Charles
Darwin’s, theory of natural selection (Darwin, n.d.)
and Richard Dawkins simulations of artificial life
(Dawkins, 1996) as an alternative solution. According
to Darwin’s theory of evolution, natural selection is
the process which describes that organisms capable
of adapting to the dynamically changing conditions
of their environment get to survive while the others
are naturally eliminated in the process of evolution.
Supporting the theory of natural selection, Dawkins
conducted numerous Artificial Life simulations, in-
cluding The BlindWatchmaker program. Fromhis ex-
perience from the simulations, he added that the na-
ture evolved by a not so careful design process, but
by randomgenemutations andnon-randomsurvival
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(Dawkins, 1988). His Blind Watchmaker program is a
sophisticated computer model of artificial selection
supporting his argument. The simulation modeled
a “bimorph,” represented by straight lines, defined
by its, length, position and angle. The formation of
such creatures was simple rule-driven, very similar to
a genome. The rules could add new lines, change
their position, and angle, leading to a discrete num-
ber of creature variants, selectable from the screen
by a user. Whichever variant the user would pick, be-
comes the basis for next generation of formmutation
by changing the selected genome in various ways.
Dawkins argued that the selection made by the user
could very well be the random selection by nature
leading to the formationofnewvariantsof organisms
giving rise to random complexity.

Extending this interactive workflow for design
search, I propose an “Interactive Artificial Selection”
based design option generation process, which al-
lows the designer to be an active participant in
the optimal design search process. Simulating the
natural selection process in evolutionary biology,
a design artifact is comparable to a phenotype
(the biomorph from the Blind Watchmaker program,
(Dawkins, 1996)), which has certain characteristics or
in computational term: “parameters.” These parame-
ters are encoded as genotypes or genome. The sys-
tem represents and builds phenotypes using geno-
types. The process to translate a genotype to form
a phenotype is called embryology, while the capa-
bility to copy or morph genotypes by mutation is
called genetics (Kumar & Bentley, 2003)s (Dawkins,
1988). The user explores the shown phenotype op-
tions and picks an option she likes. Next, the system
reconciles the genotype of the selected phenotype
and formulates new phenotypes from it. The process
to formnewphenotype includes crossover, mutation
and with randomly regeneration of genotypes. Re-
fer Figure 1. Our idea is to develop a computational
framework, a tool generating design options of arti-
facts based on an embedded grammar or language
or rulesets.

Figure 2
Shows the meta
ball shape option
generation based
on system
recommendation
and user selection.
Every rectangular
block is a selectable
option for the user.

Figure 3
Updated view of
the design
options,when the
user makes a
selection to the
previous iteration.

In the next section, the paper describes literature
review and relevant works in the direction of design
optimization. Then it describes two use cases of the
proposed technique, highlighting how it can bene-
fit designers by bringing them closer to the search
and retrieval of optimal designs from the vast design
search space. I summarize the paper with a discus-
sion and conclusion section. This paper has the fol-
lowing contributions : 1. Extension of a well-defined
technique from evolutionary computing, highlight-
ing interactive steering of machine intelligence to
search optimal or desirable design solutions 2. A sys-
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Figure 4
(A) Showing 36
designs off
metaballs visually
composed in
different ways. (B)
Explains the
component of a
design option,
defined by a
metaball, contours
and its color.

tem prototype, showcasing design option genera-
tion and selection based on the extended technique
described. 3. Twouse cases; onewith a blobby shape
generator and another to demonstrate spatial pack-
ing in concept design stage.

RELATEDWORKS
Genetic Algorithm
Cho et al. implemented an interactive genetic algo-
rithm to build an image retrieval system using hu-
manpreference and emotion. Their systemextracted
image features from a large database, in spite of the
user not being able to define what the image should
be clearly. Their search and retrieval technique sup-
ported implicit queries based on emotion reflected
in the image. They used interaction as a means to
evaluate the search results, as it was impossible to
define an explicit fitness function for implicit (sub-
jective) queries. However, they lacked enough capa-
bilities to encode correct expression of images and
likewise needed to test additional genetic operators
(Cho & Lee, 2002). Xiayan et al. studied user evalu-
ation fatigue and uncertainties in complex optimiza-
tion scenarios. They tested an evaluation technique
of user fatigue in interactive optimization methods
for a personalized search for books. Supporting a
user based on an evaluation of optimization results

instead of explicit fitness function ( often impossible,
due to the subjective nature of personalized search
space ), the authors designed a technique to reduce
human fatigue and uncertainty in the interaction
pipeline. Their technique analyzed browsing time
and user preference using a Gaussian model, which
performedbetter thanpreviousother techniques (Xi-
aoyan, et al., 2017). My work gets inspiration from
the above, in providing a dialogue between the user
and themachineenablingaworkflowcapableof cap-
turing user’s subjective choices and dynamic design
goals iteratively.

Design Option Generation
Eiben et al. have looked into evolutionary com-
putation’s role in hardware development and au-
tonomous machines adaptive to their environments.
They compare evolutionary computation with nat-
ural evolution, highlighting its benefits concerning
othermethods. Also, they emphasise generative rep-
resentation of phenotypes allowing reuse of code,
enabling scaling of complexity in varied areas (Eiben
and Smith 2015). Karl Sims showed his work in us-
ing genetic algorithms to generate morphologies
of creatures and their neural systems by employing
varied fitness functions. He used nodes and con-
nections representing directed graphs to structure
the morphology and the neural circuitry. He fur-
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ther mated the graphs to form a variety of design
morphology by crossover technique. He also com-
pared complexity with control and discussed the role
of aesthetic selection as a possible means to con-
trol the production of these creatures as opposed
to allowing the automatic evolution of the forms.
(Sims, 1994).Prior to this, Karl Sims modeled geno-
types as symbolic expressions in an attempt to sur-
pass the limitations of fixed-length genotypes with
predefine expression rules. He further reinstated un-
like genetic algorithms, his technique of creating var-
ied forms, creatures and shapes were not dependent
onanexplicit analytic functionmeasuringanyfitness.
He moved away from traditional genetic algorithm
method, as it is difficult to automatically measure the
aesthetic visual qualities of simulated objects or im-
ages etc. Hence he relied on a human user to pro-
vide that judgement, demonstrating prototypes us-
ing combinations of automatic and interactive se-
lection (Sims, 1991). Work of Mark Bedau studies
the overlap of cognitive science and artificial life in
the field of molecular self-organization, evolutionary
robotics and evolutionary complexity and language.
One of the important aspect studied was evolvabil-
ity which depicts the capacity of evolution to create
new phenotypic variation and the systems ability to
search the variations. (Bedau 2003). I am using some
of these techniques in the design space for architects
and graphic designers and this paper describes two
prototypes proving that with modern machines, we
can encode an interactive artificial selection based
optimization loop where the user is the key to steer
the search direction of the underlying model.

SYSTEM DESCRIPTION: SOFT BLOBBY
SHAPE CREATION
In order to simulate a natural process of design gen-
eration, there needs to be some rules and guidelines
laid out. These rules can propagate creation of geno-
types, which gets translated to a phenotype, the pro-
cess called as embryology (Dawkins, 1988). Once the
process of design generation is in place, it can give
rise to the emergence and organic complexity. For

the test case, I have selected implicit shape based
blobbyobjects ormetaballs (Blinn, 1982) to create or-
ganic forms in 2d space. The system initiates by au-
tomatically generating some design artifacts for the
user to explore. As aforementioned each such de-
sign artifact is called a phenotype, and the genes that
create them are called genotype (Sims, 1991). Geno-
types are the encoded information set to build the
phenotype. It can be procedural parameters, sym-
bolic expressions or binary strings. A set of procedu-
ral rulesets or preset operators transforms an input
phenotype to a new phenotype. After every design
generation, the user selects one or few of the output
designs (or phenotypes, Refer Figure 2). At the next
iteration, the system consumes the selected pheno-
type as input and develops new phenotypes based
on the selectedone. This is facilitatedby randommu-
tationandcrossoverbetween the choices selectedby
the user (the expert) which is explained further in the
paper.

Phenotype and Genotype: Implicit Shape
driven BlobbyObjects
Implicit shapes are generated by equations of form
F(x,y,z) = c, where c is a constant. I used the fol-
lowing equation to generate the meta ball shapes:
F (x, y, z) =

r · r
(x− x0)

2 + (y − y0)
2 + (z − z0)

2

where, r is the radius of the balls,x0, y0, z0 is the cen-
ter of the metaball. Based on the metaball creation
algorithm [1], I used a random threshold value to as-
certain an isosurface, which encloses the space inside
or outside the boundary formed from the equation.
Genotypes are represented as a sequence of param-
eters, which can be used to produce a future phe-
notype (Sims, 1991). Genotypes have two important
properties. One is that they canbe copied fromanex-
istingphenotype to theother, and theother property
is being able to change their values, to create new
genotypes from existing ones. These properties are
also termed asGenetics byDawkins in his artificial life
simulations. The success or failure of any phenotype
from one generation to the next is dependent on the
qualities embedded in its genotype. In this use case,
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part of genotypes descriptions are a number of blobs
“nb”, radius “r”, distance “d”, color-value “cl”, number
of contour lines or rings “nr” and a sequence of op-
erators. For example: (radius, colorValue, distance)
(add)(split)(extend). Operators are described in the
next section.

Operators
Once a 2d composition ofmetaball based soft shapes
with contour lines are rendered as shown in Figure
4, I deployed additional operators, which enable the
user to modify any selected design option. As men-
tioned previously, the operators are part of the geno-
type description. Any of the methods added below
becomes part of the genotype. The operators are dis-
cussedbelow:1. Add: This adds anewmetaball to the
existing base phenotype.2. Subtract: This removes
the lastmetaball from the existing base phenotype.3.
Split: This adds a metaball in between twometaballs
at a random location on the line connecting the two
metaballs.4. Extend: This adds a newmetaball on an
extended line between any other nearby connected
metaball.5. Angular Add/Void: Adds or removes a
metaball at an input angle about one of the input co-
ordinate axes.

Mutation
Mutation is a process, which ensures variation in the
future production of design artifacts (Whitley, 1994).
Mutation is a random procedure. Whenever the sys-
tem starts mutating, it changes the genotype by a
random factor. The updated genotype transforms
the phenotype into a newly generated design arti-
fact, which varies from the original by some charac-
teristics ( Refer Figure 5).

Cross Over
As the user makes a selection of designs, the system
randomly picks some of the previously selected de-
sign choices as parent phenotypes and mixes their
genotypes in various ways (Whitley, 1994) to form
new genotypes as shown in Figure 5. This is simi-
lar to mating in organisms to form a possible hybrid
candidate. The proportion in which different geno-
types are combined is randomly chosen for eachgen-
eration, ensuring variation in newdesign generation.
For example, as shown in Figure 3 designwith 5 small
red toned metaballs is cross-bred with 2 balls large,
green-toned metaballs to come up with new design
variants.

Figure 5
Shows the
Interactive Artificial
Selection cycle.
Clarifies parts
handled by a
human, while the
search is handled
by the machine.
Explains the
cross-over
techniques based
on past set of
selected designs by
the user.
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Fitness Function
The described approach is very similar to the ge-
netic algorithm-based search processes (Grenfen-
stette 1987). It differs in one main aspect that the
next generation of improved design artifacts are not
based on a fitness function or objective function but
are based on selective choices made by end users.
I call this process, “interactive artificial selection.”
However, I also tested interactive artificial selection
with the objective function based selection, mean-
ing that the users can define their objective function
early on. As the system iterates through generations,
it showspossibledesignalternatives andwaits for the
user tomake a selection. Next, it breeds thenext gen-
eration. Simultaneously, it automatically highlights
design artifacts which are deemed optimal based on
the performance of the objective function. This en-
ables the user to compare between option selected
subjectively and option recommended objectively in
the system.

Designers Use
A system like above can assist a designer to find a
design pattern for graphic design or other creative
purposes, such as interior tiling, facade pattern for-
mation, etc. Such a design goal, often would not
have objective metrics to evaluate each generation.
An interactive tool like above provides a workflow,
where the designer makes choices from possible op-
tions and updates design goals incrementally. At the
same time, the tool performs like an idea generator
of possible solutions, which haven’t been thought of
before. Another similar use case could be site plan-
ning and landscaping option generator, where the
goals are little more objective. The position of the
metaballs could be the built space, while the con-
tours could be landscape profiles or change of levels.
An example can be seen in Figure 4. Iterative selec-
tion can quickly provide many design alternatives in
the direction that the designer thinks is interesting.

SYSTEM DESCRIPTION: SPATIAL LAYOUT
DIVISION
Interactive Artificial Selection based technique can
be tested on form generation and early space pack-
ing ideas. In this prototype the designed artifact or
the phenotype is a built form, with packed depart-
ments or zones: a collection of spaces which can be
grouped functionally in a built space). Refer Figure
6. An example of a zone and a space in a hotel tower
is that the hotel bed tower is a zone, while each ho-
tel room is space. Similarly, Food and Beverage is a
zone while, kitchen, back of house services, mainte-
nance room, mechanical room is space. The system
would generate a phenotype of a 2D form (shown as
a closed outline), subdivided by polygons represent-
ing zones. It also communicates the attributes of the
phenotype, for example, how many required zones
are fitted in the spatial layout, the total area covered,
My prior work, Space Plan Generator(SPG) provides
a solution to this problem of automated space plan
layout generation (Das, et al., 2016). However, un-
like SPG, this prototype is iterative and interactive in
design choice selection following similar principles
as mentioned above. Also, the technique allows to
search similar options to the one that the user liked
and thus can help find similar looking space plan lay-
out variations.

Phenotype and Genotype : A Form Genera-
tion
The phenotype here is the built form represented
as a 2D closed polyline. The user inputs a required
area and list of departments or zones each with an
area requirement. The system breaks down the form
in 1 . . . ..n rectangles, which are called “parts”. Each
part is given a proportioned size ps1 : 0.3, ps2; 0.7.
The system stores a list of length to width ratios i.e.,

rt :

{
sqr :

1

1
, rectA : ½, rectB : �, elong :

3

1

}
.

Given the number of parts, the system assigns an
area to each part and randomly picks a ratio for it.
Each part has four points: p1, p2, p3, p4. A point
“pi” has four sides namely A,B,C, and D. At

AI FOR DESIGN AND BUILT ENVIRONMENT - Volume 1 - eCAADe 36 | 91



Figure 6
Image showing the
spatial layout
options. The blue
outline is the parts
for the form, while
the inner red line
represents
composition of
zones inside to
satisfy the user
requirement.

any point, the parts are placed from left to right and
defined by an encoded genotype. The left part is
placed with an orientation, i.e. 0: landscape and 1:
portrait. Then the next part is attached at one of
the point “pi” along one of its sidesA,B,C or D
with a set orientation. This is repeated till all parts are
added. The net form is defined by the total of all the
parts. The genotype is encoded with the code, part-
Name|pointName|sideName|orientation. An exam-
plegenotypecode is00|p2|C|L02|p3|A|P01|p1|A|P .
Refer Figure 7.

Phenotype andGenotype: A Zone Creation
At thenext iteration, the systemfits zones in the form.
For eachpart, the systempicks zones of the compara-
ble area and fits zones using a strategy used in work
(Das, et al., 2016). It would pick the smaller side of
thepart rectangle andadda rectangleof the required
area representing the zone added. The systemwould
iterate till all parts are filled with zones or required
zones to be added already added. This technique of-

tenmight under or over satisfy a zone area, but at this
point, it’s acceptable as the intent of the technique
is to provide approximate conceptual spatial packing
options as shown in Figure 8.

Figure 7
Diagram (A) and (B)
shows how
different parts can
integrate to make a
form for the spatial
layout.

Figure 8
(A) Shows the
spatial organization
of parts and zones
within each part. (B)
Shows for each part
there is four points
and any such point
has four sides.
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Operators
Given the phenotype, the system allows the user to
specify certain actions using a preset list of operators.
Actuating any of them updates the genotype of the
design enabling future replication and mutation of
the gene. The following operators are added:a. Add:
This adds another part to the phenotype. The part
attaches to the right of the last added part, to any
randomly picked point.b. Remove: Removes the last
part added to the spatial layout. System reconciles to
fit the zones in the removedpart to the other existing
parts.c. Rotate: The user can change the orientation
of any part or can change the orientation of the total
spatial layoutd. Elongate: Can elongate the longer
side of any of the part from the spatial layout. The
system extends the size of the zones fit in it.

Designers Use
A system like above is clearly useful in the early con-
cept design phase for Architects and Space Plan-
ners. It helps them ideate solutions to complex lay-
out problems, without the need to draft or sketch so-
lutions. Reducing time to explore design alternatives
not only helps them explore more options in a short
time, but also allows them to invest project resources
efficiently. Steering the production of layouts in the
direction they deem fit, is unique to this prototype as
opposed to some of the past such tools as aforemen-
tioned.

Discussion
The technique described allows the designer to con-
trol the direction of search to the system (Refer
pseudo codeprovided). However, the prototypes de-
scribed have few limitations. One limitation is that
there is no memory or stored checkpoint. At any
point, if the user likes some options but, wants to
steer in a different direction to explore, there is no
way to revert to the same option. One possible solu-
tion could be if the system can save snapshots of the
saved states including a collection of all phenotypes
and their genotypes, the user can retrieve previously
liked design artifacts. Another limitation is thatwhen
the change in thegenotype is not significant enough,

there is not enough variation in the design options.
The user explores almost same design alternatives,
leading to a dead end in the otherwise large search
space. A possible solution can be adding an interac-
tive slider to the interface, allowing users to control
the randomness in new genotype creation.

Algorithm describing phenotype
↪→ generation process.

//function to make phenotypes
function makePhenoOptions(numOptions){
for(var i =0;i<numOptions;i++){

var selectedPheno =
↪→ getUserSelectedPheno();

var selectedGeno =
↪→ getUserSelectedGeno(
↪→ selectedPheno);

var updatedGeno = updateGeno(
↪→ selectedGeno);

var newPheno = makePheno(updatedGeno
↪→ );

phenoDisplayList ,push(newPheno);
}
}

//function to update genotype from a
↪→ given genotype

function updateGeno(givenGeno){
var newGeno;
var randomNum = getRanomNumberBetween
↪→ (1,0);

if(randomNum >=0.7 && randomNUm < 1){
newGeno = mutateGeno(givenGeno);

}else if(randomNum >=0.4 && randomNum
↪→ < 1){

newGeno = crossOverGeno(givenGeno ,
↪→ randomGeno);

}else{
newGeno = randomGeno();

}
return newGeno;
}

Another possible future work would be coupling in-
teractive genetic algorithm and interactive artificial
selection. The system thus formed can keep showing
optimal design alternative based on an objective fit-
ness function,while theuser iteratively selects design
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options based on above techniques. This would fa-
cilitate comparison of optimal design options based
on objective and subjective criteria. Possibly the fi-
nal selected option could be a mix of the best from
both ends. As the simulation runs, on any genera-
tion, users can mix the two set of options by a given
proportion, asking the system to generate those op-
tions, which the user likes based on their selection at
each iteration but also picking the ones which per-
formed well in the objective criteria. Furthermore,
the process allows the system to capture and inte-
grate user’s subjective choices or bias with the objec-
tive criteria of design generation. The systems cur-
rently do not account for symmetry in the visual ar-
rangement. However, it will be interesting to encode
symmetry in the genotype of the design options.

Conclusion
Interactive artificial selectionbasedgenerationof de-
sign output shall augment designers work with com-
puters to generate, explore and evaluate designs that
they like and think is a better-suited solution for the
context. Till now, computers and humans have been
working independently in areaswhere they aregood.
But the researchpresented starts a dialoguebetween
the human and the machine enabling the efficient
use of compute resources. Unlike many other similar
systems comprising of endless searches to findfitting
solutions includinggenetic algorithmbased systems,
the solution shown will allow designers be part of
the optimization process and allowing capture sub-
jective criteria of the user. As a test case, I prototyped
a modeling fluid metaball based soft shapes to aid
design delivery of organic forms, but this can be ex-
tended further in otherways to the device and imple-
ment design generation grammar. Another example
I tested is juxtaposing programmatic components as
polygons representing spaces or rooms.
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