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ABSTRACT

Through laser scanning, GIS data, new manufacturing meth-
ods, and complex designs, analysis of terrain in relation to
human mobility is becoming ever more necessary. While
standards for wheelchair ramps exist, they rarely show the
entire picture, nor do they account for surface variation be-
yond a single axis. Although graph creation techniques in
CAD exist for flat terrain, directional edge weights account-
ing for this variation are lacking. In this paper, a summary of
research from both biomechanics and architecture in relation
to surface walkability is presented, followed by a review of
creation methods for a searchable graph representing an en-
vironment in CAD. A novel graph creation method that can
respond to variations in surface height for walkability anal-
ysis is presented, where the edge weights of the graph are
based on surface condition of parent-child height variations.
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1 INTRODUCTION

While acoustics, lighting, and thermal comforts are common-
place in building analysis, more individualized human factors
are often left out. Two main challenges to integrating these in-
dividual factors are: the simulation and specific analysis from
a human perspective, and the interpretation of a building or
environment to run these metrics on. The latter issue is the
focus of this paper, as the former is often the focus of biome-
chanics research through human subject studies and can be
used as reference data.

To calculate walking distance and visibility in space, various
academic approaches to the problem have been developed,
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largely revolving around line of sight and overall shortest path
movement from different rooms. However, the manufactur-
ing and traditional construction methods of the past kept the
ground floor of a building flat. With newer technology and a
look at the urban scale, this flat ground is not guaranteed. It
is the goal of this paper to introduce an algorithmic approach
to interpreting an unknown terrain or building environment in
CAD as a searchable and directional graph whose nodes exist
only in user-defined accessible terms. While the term walk-
ability is used in various contexts, this paper focuses on the
generation of the graph in which additional analysis can be
generated.

1.1 Human Factors Based Evaluation

There is often a misunderstanding from the design perspec-
tive of the role of localized human factor analysis in build-
ings. While a building can be considered a structural frame or
blank template that allow an occupant to freely move within,
the layout, shape, and small details such as carpet type can
have a profoundly larger impact than many realize. Further-
more, the lack of tools and analysis methods makes it nearly
impossible for a designer to have the background knowledge
and mental computation to make choices related to the hu-
man. Therefore, various building codes and standards have
been developed to aid in the process, and bring some mini-
mum standardization to the built environment.

In the case of accessibility, building codes such as the Ameri-
can Disabilities Act (ADA), while a good step towards secur-
ing a minimum standard, have also left many architects and
designers assuming this standard is satisfactory. On the other
hand, the ADA is often viewed as a hindrance to a building
design, especially if the architect is unaware of the method-
ology behind a particular regulation. While at first this atti-
tude toward the ADA may seem insensitive, this view is not
entirely unwarranted, as the ADA is based on a prescriptive
code. In fact, just three years after the ADA was enacted, re-
searchers in architecture had developed computer-aided tools
for interpreting the environment based on people, specifically
pointing out the lack of quantitative methods for assessing a
design in relation to the goals of the ADA [11]. Examples of
standards lacking justification through research are too com-
mon for designers to blindly follow. In the case of stair width,



it had been defined as 44 inches for 2 files of people; however,
no evidence had been used for arriving at this number. Like-
wise, assumptions have been made, such as an increment of
6 inches is too small to impact flow, that turn out to be incor-
rect [20].

In a comparison of perception of design elements between
designers and medical staff, designers were more likely to
focus on psychological elements such as views of nature or
color, while the medical staff focused on physical health such
as handrails and safety bars [10]. Part of this discrepancy
may be due to the approaches and interactions each discipline
has with the built environment, as designers may view the
built environment on a macro scale, while the medical staff
are inside, with localized interactions. The straightforward
solution to this is through simulation and analysis; Design
tools can alert and inform about these localized interactions,
just as lighting and thermal analysis tools do now.

Notably, the increased use of machine learning in nearly ev-
ery discipline has inevitably found its way into the design of
the built environment. While the implementation details and
results are out of scope for this paper, the approach taken and
key observations are important. Specifically, in order to gen-
erate metrics to be optimized, [29] reviewed numerous papers
and strategies of design in relation to the human, pointing
out interior design metrics such as "a television should main-
tain a certain distance from the normal viewing area...The
width of a pathway should depend on the habitant’s body
width...” [29]. While these may seem more or less obvious
to a designer, the access to these metrics in CAD tools is still
missing.

This paper focuses on the physical attributes to traversing a
space through human mobility. In considering the walkability
of a non-flat surface, the types of surfaces for human traversal
can be characterized as:

e Flat (leveled floor)

e Ramp (slope along the progression axis)

e Cross-slope (slope perpendicular to the progression axis)
e Staggered (stairs)

e Uneven (variations in curvature, natural topography)

e Uneven staggered (faceted surfaces, bricks in walkway)

The items in this list, with even minor variations between
them, have a profoundly different impact on people. Each
of these items can be studied and referenced in the biome-
chanical literature. Furthermore the impact of these surface
conditions are not always obvious. In the case of a stag-
gered surface (most commonly presented as stairs), recent
stair-climbing studies on the relationship between the rise and
run of a step and the probability of a fall [19] have had an im-
pact on architecture by leading to a 2015 change in building
code for stairs [24]. Of importance for simulation and evalu-
ation, the building code value of stair tread is not an absolute
cut-off to fall probability and should still be evaluated on a
case-by-case basis.

In non-flat ground condition studies through an instrumented
treadmill, 62% increase in hip work was found, with an over-
all increase of 28% in net metabolic energy expenditure [27].

In the case of cross-slope walking, the asymmetrical move-
ment required may lead to falls [6]. On an even more specific
ground condition, small variations in brick height of walk-
ways, often caused by weather over time, were found to cause
a person to lower their center of mass for additional stability,
while also increasing flexion in some joints, likely leading to
a higher energy expenditure [5].

Walk-ability on various ground conditions at a large scale,
such as within an urban environment, provide an improved
metric to assess the space. In [28], the authors look at ur-
ban analysis in various ways, including comfort and mobility,
with implications towards new zoning rules and regulations.
Metrics such as mobility are directly impacted, as seen in the
literature, by the ground condition, and likewise, so is com-
fort. In [16], various design metrics are outlined as hav-
ing opportunity to be calculated with modern tools, including
Adjacency preference and Buzz. Likewise, the accuracy of
these metrics would be impacted by varying ground condi-
tions, making it harder to reach a certain location, or causing
changes in circulation speed at various locations.

An indoor walkability index (IWI) was defined as “a mea-
sure on which a path has good performance for pedestri-
ans in the building” [13]. In particular, [13] describes three
factors that make up the assessment: Distance, Accessibil-
ity, and Pedestrian-friendly for evaluating indoor walkabil-
ity. However, surface quality, which through biomechanics
research (stated above) has the largest impact on walkability,
is not accounted for.

1.2 Graph Generation

The generation of a graph that can be used to evaluate metrics
of a building has been approached in multiple ways within
architecture research, largely revolving around the specific
metrics in focus. Early work in this area revolved around
the concept of an isovist,or visible points in space [1]. Fol-
lowing this intention, the graph constructed in the building
was based on, and held information to, the visibility within
the space [25]. Likewise, analysis of circulation throughout
an entire building has been demonstrated by [12], referred to
as the Universal Circulation Network (UCN). Rather than a
dense graph of adjacent nodes, the UCN leverages the data
structures within BIM to build a graph based on visible paths
and shortest distances.

The visibility graph defined in [25] uses a combination of
even grid projections and vertex intersections. The authors
note the intention and possible use for considering the ver-
tices as potentially occupiable spaces. While the idea of a
permeability graph, in which a visibility graph is constructed
at floor level, could be used for obstacle detection and acces-
sibility, it is not demonstrated or explicit. A problem in using
the visibility graph in [25] for accessibility is the distribution
of an even grid in plan at eye-level. In particular, the need to
connect staircases to separate graphs on each floor illustrates
the single dimensionality of the approach. Given a ramp or
slope ground condition, the visibility graph plane would in-
tersect, not completing the series of connections described.



Implementing 3D Isovists, [21] projects rays spherically at is
what is referred to as an observation point, although the au-
thors do not detail how these points are decided. The use of
these spherical projections is to essentially map visible depths
throughout a space, similar to Lidar on an autonomous robot,
and classify the space based on feature extractions. The iso-
vist in this case, while analogous to vision through the pos-
sible lines of sight dictated by the rays, is not employing a
method of human factor analysis, but rather a tool for parsing
and understanding the environment. In the case of binocu-
lar vision, [9] analyzes the human view from nodes placed
through possible sitting locations. The nodes in the graph are
populated along a curve using user input parameters.

A common technique in generating a building graph is the
distribution of a rectangular and equally spaced graph across
a floorplan. This may be done either through a generation of
points, or a method employing ray tracing. This method, sim-
ilar to [25], comes with important drawbacks. First, for cases
in which the floor plan is shaped as an L or U, a large num-
ber of unused points are generated and need to be dealt with
through wasted computation. Second, the planar aspect limits
the ability to interpret uneven surfaces. Finally, edge connec-
tions may be generated in inaccessible locations within the
environment. A method for reducing the node/edge connec-
tions is culling, as demonstrated in [17], where the intersec-
tion between an object and the line connected from two nodes
invalidates the edge. Alternative strategies have followed the
implementation of the UCN, with navigational boundaries
dictated by the convex points of objects projected onto the
plane [7]. In [8], a voxel based approach in which the entire
environment is discretized, with each voxel containing addi-
tional properties for use in a large variety of evaluations.

Graph search for navigation

Graph search for spatial navigation is a well-established tech-
nique in path finding problems in the domains of automation
and planning, robotics and game development. An early work
in this area by Botea et al. showed a hierarchical path finding
method to find optimal paths on grid based maps. Following a
clustered map approach, they showed the hierarchy could be
extended to more than two levels [2]. In the context of Archi-
tectural planning and human behavior simulation, the work of
Chu et al. shows a way to sense the vicinity of the physical
obstacles within a visible space to simulate the influence of
social behavior on evacuation. They discretized the continu-
ous 2D space into square cells forming a 2D grid, which is
further connected via edges linking visible navigation points
[3]. Turner et al. showed their technique can improve human
behavioral response using artificial evolution of existing nav-
igation rules Their technique proves that human’s guidance
mechanism does not depend on the spatial properties acting
on their direct perception [26].

Path-finding in sloped-terrains

A smoothest path through a sloped surface or terrain is a topic
of research within gaming and robotics which overlaps with
the goals presented here. Roles et al. showed a novel tech-
nique to compute the smoothest path through a sloped terrain
[22]. Based on Dijkstras algorithm, their technique optimized
distance and slope to retrieve the least rigorous path between

two queried points A and B on sloped terrain. These pointts
were chosen from a set of points V' which are retrieved from
the input mesh geometry. They hypothesized that a minimally
sloped path would be most desirable over terrain or sloped
land surface for various reasons, i.e., in hospital, etc. Their
algorithm is based on a node, edge graph system, where a
starting point A appends all the adjacent vertices or nodes
nearest to A by a threshold distance. Then they compute a set
m where vertices of least weights to each explored nodes in
the graph are added. This is repeated till the ending vertex or
point B is reached. Finally, the smoothest path is retrieved
starting from the ending point B to starting point A. The
weights of each node are computed using traditional short-
est path method, i.e., the sum of between two nodes and the
distance already traveled.

Liu et al. studied and implemented slope constraint for terrain
surfaces. Further, their method involved intelligent surface
simplifications in searching for shortest paths using the input
slope constraint efficiently. They described the technique of
surface simplification to reduce the complexity of finding the
shortest path [14]. One intuitive benefit of surface simplifi-
cation is gain in speed to compute the shortest path (i.e., less
number of nodes, thus fewer computations). However, one
key challenge is the slope of the simplified surface might not
satisfy the slope constraints of the original surface. Even if
the slope constraints are satisfied, it might be longer than the
shortest smooth path discovered on the original surface. To
address the second challenge, the authors introduced a dis-
tance requirement in addition to the slope requirement while
searching for the shortest path. Our technique however differs
by deploying a novel technique of graph creation on an input
3D geometry representing any architectural or urban space.

Agents on terrain

While human behavior analysis in terms of architectural
spaces often benefits from character path detection for evac-
uation, shortest paths for nurses to patient beds, etc., these
techniques help in simulating critical scenarios like natural
disasters. Beyond the large scope of agent based simulation,
the control methods for an agent on a surface are relevant to
this work.

One common method is to use physics-based environment
controls so that a character (e.g., occupant or agent) remains
on the ground due to physics-based constraints or the char-
acter automatically knows how to orient oneself to stabilize
its posture naturally given the dynamically changing neigh-
boring terrain and environmental condition. Further, naviga-
tional paths and accessibility within the environment are then
decided on-the-fly based on the characters interaction, posi-
tion, and orientation (e.g., [15]). As this works on a single
and relative location, it is not a suitable technique for com-
plete building analysis.

In general, the following assumption can be made based on
prior literature: a dense graph containing nodes only in hu-
man accessible locations can be used for a large span of eval-
uative metrics. Albeit through an IWI, a buzz metric, or visi-
bility maps, resolution of the graph with directional edges is
advantageous. The drawback to the dense graph approach is
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(a) Ray misses a surface

(b) Node position outside limit

(c) Graph continues by relative heights

Figure 1: Illustration of three common occurrences in graph creation of non-flat surfaces. Green circles represent a valid node
and red circle as invalid based on the parameters given as variables.

computational time in generating and searching through. In
some cases, the computational time is reduced through the se-
lective node/edge pair generation. In the case of search times,
various methods in computer science have addressed the is-
sue through a variety of datastructure reduction techniques,
suggesting a dense graph could take the form of a superset
composed of multiple optimized subsets for a particular met-
ric. Importantly, the sparsity of the graph cannot be so that
variations in ground conditions that would impact mobility
are missed.

2 METHODOLOGY

In this section we define an accessibility graph, where all
nodes are possible locations of an occupant in an environ-
ment, given user-specified parameters (e.g., a 12:1 slope).
The Ul‘dph itself is directed, and nodes consist of a parent-
child relationship. The algorithm for generating the graph,
and the method for implementing the system in the Grasshop-
per environment of Rhino3D are shown.
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Figure 2: The parent-child relationship in the (xy) plane.

2.1 Graph Creation

Given a known possible occupant location in the environ-
ment, possibly the sidewalk of an urban space or lobby in
a building, the other possible locations of an occupant can
be found by using ray casting and a queue, such as in [23].
There are two main components to the directed graph G =
{N, E} with N nodes and F edges. In concrete terms, the
set IV represents the accessible locations of an environment
for a person given a specific starting location, while F is the
set of costs between these locations. As the graph is directed,
a cost value e; ;, where e € F, corresponds to an ordered pair

(ni,n;) where n € N. The ordered pair of nodes (n;, n;) is
referred to in this paper as the parent- -child relation (Fig. 2),
where n; is the parent and n; is the child, with the corre-
sponding cost €; j applied from the parent to the child. The
cost can be calculated both at the time the node pair is created
or after the construction of NV is complete, as described later
in this section.

The algorithm to build the graph using recursion can be seen
in Algorithm 1 (can be implemented with a loop as well). The
given start location initializes the first parent node p. The par-
ent set P is derived from the first node n; in the parent-child
relation (n;, n;) contained in P = {n;|¥(n;,n;) € N}. Dur-
ing each iteration of the algorithm, the given parent node is
checked for valid children. If a child is valid, a parent-child
relation is created and an edge cost is assigned to that ordered
pair. The cost value is defined in setEdgeCost (p, c),
where a typical definition of the edge cost for the ordered
pair may be Euclidean distance. However, weighted parame-
ters for various surface conditions can be used as well (see
Sec. Edges). Finally, the children that are not in the par-
ent set are then added to the queue () and passed to the
buildGraph (G, Q) function until all possible parents and
children have been evaluated, and @ = ().

Algorithm 1: Build directed graph of nodes and edges

N.E « 0,0
G « {N,E}
Q[0] ¢—start location
Function buildGraph (G, Q):
p < Q.pop()
C +getNodes (p)
for c € C do
€p,c — setEdgeCost (p,c)
N 3 (p,c)
Esepe
if c € P then
Q3c
return buildGraph (G,Q)

Nodes
While N defines the edges used in search algorithms, N itself
is useful as well. In particular, the set N can be tessellated to



generate a valid walkable surface, and used in ways similar
to that detailed in Section Introduction. Furthermore, this set
can be used in data structures to define additional parame-
ters and qualities of specific locations throughout the envi-
ronment; albeit acoustic, lighting, and view-ability, reach, or
fall probability (e.g., [23]) in which a building graph for cir-
culation (e.g., [12]) alone does not provide the resolution for.

An important contribution of this paper is the extension of the
node creation protocol from [23] to include height variations
when generating the graph. Similarly, the number of nodes
in the set IV increases as each valid node location is used to
check for additional valid nodes in immediate proximity (i.e.,
finding the child nodes). While the initial configuration of the
parent-child relation is the same in the (zy) plane (Fig. 2),
modifications to the inclusion of a child node were made to
extend the graph creation to non-flat surfaces. To illustrate
how the graph creation accounts for non-flat surfaces when
generating nodes, Figure 1 shows the node evaluation in the
(zz) plane where the ray cast direction is —Z, and as the graph
is in relation to physical space, —Z corresponds to the direc-
tion of gravity. The surfaces illustrated provide examples of
a step, faceted surface, and natural topography (e.g., a hill or
mountain). Each sub-figure uses the same parameters but il-
lustrates various situations in which a node can be valid or
invalid. The variables used in this figure are also used in the
equations and algorithms. In Figure la a is the parent-child
offset in the (zy) plane, r is the set height increment in 2
from parent to child, m = oo, such that a ray that does not
hit a surface. In Figure 1b d is the allowable height variation
from a parent in —2 such that ¢ < d and f > d, resulting in
an invalid node (red). When a possible node is invalid, it is
not added to the possible parents queue @, and in the simple
example within the figure, the graph completes. To further
illustrate the relative positioning of parent-child nodes, the
vertical increase shown in Figure Ic¢ demonstrates how the
height offset r is relative to the previous node (when viewing
left to right). Likewise, for each valid (green) node, the node
to the left would be the parent.

The explicit definition of the valid nodes is given in Eq. 1.

N = {n;|n; € (n;,n;)|(ni,n;) € E} (1

After defining a starting location, Algorithm 1 tests the
start as the initial parent node by calling the function
getNodes (p) to check for possible children. This func-
tion is shown Algorithm 2.

The parent node p passed to getNodes (p) is checked for
possible children by initializing locations in the (zy) plane
in eight directions of a bounding square with a length of 2a
(visualized in Fig. 2). The z component of the parent node is
then added with the height threshold r. The possible child is
then passed to a function getChild (c) that checks a ray
for intersection with the nearest surface or geometry using the
start location c and direction —Z. If the intersection is outside
the defined criteria for a valid node (i.e., intersection distance
is > d), or there is no intersection found, the function returns

Algorithm 2: Check for valid child nodes

Function getNodes (p) :
// Check parent p for valid children c¢

fori <+ —1to1ldo
for j «— —1to1do
c(pr+(ixa)py+(jxa)pz+r)
¢ <getChild/(c)
if ¢ = false then
ceC
return C'

false. If the intersection matches the criteria for a valid node,
the intersection location is returned.

After checking for valid child nodes,getNodes (p) returns
the child set C', where c|c; € C. Given at least one valid
child in buildGraph (G, Q) of Algorithm 1, such that C' #
(),the parent is added to the graph with a directional edge to
its child node(s). The child is then added to the queue if it is
not already a parent in the graph.

As established in [23], the use of ray tracing to build the graph
has a specific advantage when it comes to unknown geome-
try. Ilustrated in la, the ray intersection allows the graph to
be indifferent to the construction of object geometry. Given
two objects obj1 and 0bj2, the geometry of the two can over-
lap. Albeit from incorrect modeling or through issues with
automated surfacing. More common may be the alignment of
two different polygons or surfaces at the edge. While mesh
planarization and algorithms used in various fields for under-
standing slopes in Cartesian space exist, the recognition of
where one object ends and another begins can be ambiguous
and only important in relation to the accessibility of the space.
Simple additions in any CAD program, such as objects con-
tained on different layers, can provide additional refinement
to the building graph creation.

Edges

The final graph is composed of ordered pairs of nodes that
correspond to an edge with a cost value. A parent-child re-
lation for nodes n; and n; is valid given in Eq. 2. We define
the vector V; as parent and 17’, child z,y, z positions, where
Vi,, = (ni,,n;,,0) and 17;} = (n;,,n;j,,0).

ey

E={(ni,nj) =9[(0 =aVvi= V2a)A

(0<B<r)V(0>B<d)B=(ni, —ny.))} ?

Where § is ||17;: - ‘i?:,} ||, v is the calculated edge cost, a is
the spacing factor between nodes in (zy), r is the threshold
value for Z, and d is the threshold for —Zz, corresponding to
Fig. 1.

The cost for moving from a parent to child node is defined
by the edge value. While this value is ambiguously defined
in this paper through set EdgeCost (p, c) in Algorithm 1
for each child c at a time, it can be modified at any point after



the graph is generated. In the simplest implementation, the
cost e of a parent-child pair is the euclidean distance. This
can often be a safe metric to use within the scope of the built
environment, especially when the set of nodes has already
accounted for accessibility. However, as the node relation-
ships are stored and locations are known, the cost function
can include the slope from parent to child, a similar technique
used in [22, 14], making upward and downward transitions
weighted differently. As multiple directions are considered in
the set of children for a given parent node, cross-slope infor-
mation can also be used in the cost function. Furthermore, us-
ing the relation between all children to a given parent, scoring
methods for a node can be applied, such as chemical diffusion
rates for agent modeling shown in [18]. It is this fine-grained
graph that affords integrating the human based metrics de-
scribed in 1.1. At the urban scale, the inclusion of varying
ground conditions to walkability analysis that can better pre-
dict comfort and fatigue can also be realized.

2.2 Data and Implementation

The algorithms described above were implemented in the
Grasshopper environment of Rhino 3D software. For user
control, the offsets and various parameters were implemented
with the Ul elements, while the majority of code was writ-
ten in python using the GhPython component and interfacing
with the Rhino Python API. The red nodes and green line for
visualization rely on the drawing elements of Grasshopper in
Rhino.

The graph is stored in a Python dictionary consisting of
parent-child relationships. The average lookup time complex-
ity of O(1) for the dictionary provides an efficient method for
interacting with the dense and high-fidelity graph. The algo-
rithm was initially and conceptually recursive, however de-
fault limits in python made implementation with a while loop
more robust.

While there have been projects for expanding the Rhino
ironpython scope [30, 4], they have specialized scripts
and installations not included in the standard python li-
brary. Due to the simplicity, a Socket based communi-
cation was implemented to communicate with a machine-
local python instance with the SciPy library. Using the
scipy.sparse.csgraph.shortest_path method, any search
algorithm type available can be used and applied to the graph.
In the examples within this paper, Dijkstras search algorithm
was used.

3 RESULTS AND DISCUSSION

3.1 Uneven

As a demonstration of the graph’s ability to include only ac-
cessible spaces, we first look at Fig 3a, in which an entire
topology is included in the graph. This case may be prevalent
when using GIS data and/or Lidar scans of a topology for a
site-specific study. Important to note, this is not from a planar
grid above, but rather from the start point A. In the search, A
to B is clearly defined as the shortest path outlined in green.
The reason the resulting graph is complete across the surface
is that there is no threshold that limits the height variation be-
tween a parent and child, meaning all nodes are connected.

However, in the case that this topology represents a mountain
or urban environment, it is unlikely a user would be able to
follow this path as the height variation between a parent-child
node relation is excessive for a reasonable person to be able
to access.

Beyond accessibility standards or guidelines, the continually
changing terrain makes the shortest path by distance an un-
likely representation of a path a user would follow. If all lo-
cations of the topology are considered accessible, the notion
of the shortest path can be modified to account for energy re-
quirements of the terrain. For example, a cost function of the
slope can be associated to an edge, whereby the shortest path
would be not based on distance alone. However, if certain
limits are placed on the ability to traverse a terrain, or within
some guideline, parameters of the graph creation can be set
to include only those spaces.

(a) Graph without threshold

(b) Graph with threshold

Figure 3: A topology with nodes generated from A, pars-
ing the entire surface. The green line is the search algorithm
finding the shortest path from A to B. In 3a, the threshold for
parent-child height variation is larger than the terrain while
in 3b the lower threshold changes the graph

Fig 3b demonstrates the user-centric graph in which a height
variation limiter can be used. The resulting graph is the ac-
cessibility graph for that user parameter, and the same points
A and B are used for the search algorithm, which now follows
a more level and easy terrain. Combined with the options to
modify the cost described previously, this graph search can
be used for city or urban planning to find the least costly, or
most efficient, method of terrain removal for human comfort
and accessibility.

3.2 Staggered

(a) Stairs excluded from graph.

(b) Stairs included in graph

Figure 4: Nodes of the graph visualized in red, with the cal-
culated path shown in green. (4a) A limiting height variable
preventing the graph from including stairs. (4b) A limiting
height variable that allows the inclusion of short steps on the
left, but not the taller steps on the right.



(a) Threshold preventing surface inclusion

(b) Search starting on bottom to top

(c) Search starting on top to bottom

Figure 5: Nodes of the graph visualized in red, with the calculated path shown in green. The two main ramps are labeled as R1
and 12 (5a) Equal thresholds prevent the graph from including nodes on R2. (5b) Nodes are on all surfaces, while the shortest
distance from A to B uses R/ rather than R2 due to the directional graph. (5c) The shortest path is taken from the top surface to

the bottom surface, utilizing R2.

In the case of stairs, an important value is in the elimination
of steps from a building graph, just as much as it is important
to be able to include them. In particular, a building occupant
in a wheelchair would not be able to traverse steps. In this
case Fig 4a demonstrates a second floor surface that is not
included in the building graph.

Conversely, Fig 4b demonstrates a modification in the height
variable such that the graph automatically can traverse the
steps and include the second floor. This traversal is relative, as
described in the methodology, and can be seen by the still too
large right sided steps. While these steps are in the world co-
ordinate system, lower than the steps and second floor plane,
they are not included based on the height offset.

3.3 Ramp and Cross-slope

As a final complex demonstration, Figure 5 shows three ap-
plicable cases to the height variation and directional graph. In
the first example, the graph is built with a height offset setting
equal when moving up and down. Within this threshold, all
but the ramp R2 is covered in nodes. As the ramp R/ is set at
a smaller incline, the top surface can be included in the graph.

Next is a case in which nodes cover all surfaces. How-
ever, node locations alone do not provide enough information
about the environment. In this case, the tolerance for an edge
to be created with the child node being higher than the parent
is smaller than the tolerance for an edge to be created with the
child node being lower than the parent. This distinction can
be seen by the shortest path algorithm applied to the nodes
A and B, where A is on the bottom plane. The shortest path
uses the R/ ramp, while physical distance between nodes is
shorter with the R2 ramp. This relationship can be further un-
derstood by using the same graph but inverting the location
of A and B. When starting from the top surface the shortest
path uses the R2 ramp.

While both up and downhill walking create additional load on
the human body, there are many instances in which one direc-
tion can still accommodate for a comfortable and safe path.
For example, going downhill may pose additional risks for
falling or balance compared to moving uphill. In this exam-
ple, multiple ramps at various slopes are used for simplicity
and clarity of the overall system. However, the linear ramps
(R2) could easily be replaced by stairs, such as in Fig. 4, and

then demonstrate that it is not accessible by an occupant with
a wheelchair (e.g., in Fig. 5a).

3.4 Discussion

In this paper, we present a method for building a directional
graph that can interpret non-flat ground conditions. The lit-
erature and approach are focused on the physical act of mo-
bility without regard for social or economic factors. How-
ever, the resulting graph contains nodes that, when associated
with locations of interest, additional metrics can be incorpo-
rated. Through thresholds in the algorithm, variations in the
ground condition can prevent the graph from including cer-
tain spaces, allowing the designer to see which parts are too
extreme or inaccessible for a given occupant. Additionally,
this method allows for the graph creation to account for stair-
cases without explicit reference, staying true to the ability to
interpret unknown geometries in CAD. The algorithm pre-
sented and the method for creation provides a platform for
layering complex and human-based analysis methods at both
the building and urban scale with high-fidelity and dense node
creation.
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