
106

Space Plan Generator

1	 Generated space plan layout
options with design score for
reference.

Subhajit Das
Autodesk / Georgia Tech

Colin Day
Anthony Hauck
Autodesk

John Haymaker
Diana Davis
Perkins+Will

Rapid Generation & Evaluation of Floor Plan Design
Options to Inform Decision Making

1

ABSTRACT
Design exploration in architectural space planning is often constrained by tight deadlines and
a need to apply necessary expertise at the right time. We hypothesize that a system that can
computationally generate vast numbers of design options, respect project constraints, and analyze
for client goals, can assist the design team and client to make better decisions. This paper explains
a research venture built from insights into space planning from senior planners, architects, and
experts in the field, coupled with algorithms for evolutionary systems and computational geometry,
to develop an automated computational framework that enables rapid generation and analysis
of space plan layouts. The system described below automatically generates hundreds of design
options from inputs typically provided by an architect, including a site outline and program docu-
ment with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this
workflow can clarify project goals early in the design process, save time, enable better resource allo-
cation, and assist key stakeholders to make informed decisions and deliver better designs. Further,
the system is tested on a case study healthcare design project with set goals and objectives.

107 PROCEDURAL DESIGN

INTRODUCTION
Design teams work under schedule and resource constraints that
limit the range of design solutions they can generate and analyze,
impeding informed design and optimal decision making. We
have surveyed building guidelines, codes, facility-planning rules,
literature, and case studies, and conducted interviews with senior
professional medical planners and architects to understand
industry best practices and acceptable design methodologies
(Das, Haymaker, and Eastman 2015). This work clarified the
implicit and explicit domain knowledge and processes in space
planning and identified opportunities to leverage computation for
repetitive design generation and analysis tasks, liberating archi-
tects to invest time in problem formulation and decision making.

In this paper, we present Space Plan Generator (SPG), an
emerging methodology and tool to automate aspects of architec-
tural design. We first briefly describe foundational work in data
structures and space-planning methodologies, then explain the
working methodology of SPG (see Figure 2) by describing the
Hierarchical Space Assignment strategy, a top-down approach
from whole to part, and the K-dimensional (K-d) Tree Data
Structure, which showcases an efficient data storage, retrieval,
and traversal technique. Next, we discuss the splitting strategy to
assign departments and programs to the site, and the imple-
mentation of a cell grid that enables circulation computation
with analysis and scoring of the generated space plans. We then
describe the implementation of the methodology in Autodesk
Dynamo, and the testing of its the validity and efficacy within a
healthcare facility case study from a large architectural practice.

2	 Activity diagram showing SPG and architect together in a design process.

RELATED WORKS
TreeMap Data Structure
Architectural design is a process necessitating multiple iterations
until design goals are achieved. Consequently, we have imple-
mented a data structure which can rapidly access identical data
multiple times and store spatial data in a manner supporting
nearest neighbor search, which is necessary to build department
and program topology maps for design fitness appraisal. Owing
to its spatial partitioning structure, K-d tree serves our purposes
by using nested elements to store data. Nested elements provide
a means to retrieve data through bidirectional traversal, top
down and bottom up.

K-d trees store and organize data as a set of ‘n’ points in a
multi-dimensional space, in a structure of a binary search and
partitioning trees. Due to their efficiency and speed, they are
primarily applied to nearest-neighbor queries, search algorithms,
database applications, and ray-trace methods. Originating in
computational geometry, their efficiency arises from the space
partitioning algorithm organizing objects in K-d space (Knecht
and König 2010). Average running time of an ‘n’ data point
database for:

•	 Insertion – O(log n);
•	 Deletion of root – O(n(k-1)/k)
•	 Deletion of any random node – O (log n) (Bentley 1975).

108

Space Plan Generation
Eastman (1972) automated space generation in two dimensions
by implementing decision rules to guide subsequent place-
ment and arrangement of design units. These rules were driven
by operators that transformed the state of the design units
iteratively to satisfy a set of relationships between them. Jo and
Gero (1998) highlighted an evolutionary-design model describing
a schema to represent design knowledge capable of providing
design solutions for the given problem requirement. Their work
highlighted topological and geometrical arrangements of spatial
elements tested on a large office layout problem. Though not
many variations of the spatial arrangement were highlighted, their
work showed the robustness of coupling genetic algorithm-based
searches with design workflows to produce good results in
space planning. Michalek, Choudhury, and Papalambrosa (2002)
presented an optimization model integrating optimization and
subjective decision making during conceptual design. Coupling
gradient-based algorithms and evolutionary algorithms, they
innovated to include human decision making in the workflow.
They implemented topology optimization algorithms on top of
geometry optimization algorithms. The results were automated
space plans but limited in variation. Nassar (2010) presented
new findings in graph theory with direct implications in space
planning problems. He described architectural space plans as
simple, connected, labeled planar graphs, and elaborated on the
relevance of finding a rectangle dual for every planar graph to
increase solution space. This work outlined a tool for architects
to generate space plans. Realizing spatial relationships as planar
graphs with nodes as rooms and edges as adjacencies, it claimed
that the proposed model could provide a truly exhaustive set of
potential designs. However, this model was limited to two-di-
mensional space plans only.

Boon et al. (2015) employed genetic algorithms to generate 3D
space stacking, respecting input adjacency requirements by the
user. Their algorithm evaluates space plans based on adjacency
constraints to minimize the total distance of all interconnected
programmatic elements. They prioritized the program spaces
based on practice expertise and user input, which helps discard
unrealistic design solutions. The algorithm stacks spaces in three
dimensions, distributing program elements over multiple floors and
sometimes unnecessarily complicating architectural space layouts.

Some relevant research in automated space plan generation
comes from game design, which requires extensive 3D environ-
ments at architectural scale. Lopes et.al (2010) generate floor
plans for different classes of buildings, many with connected
floor levels, offering limited control to the designer for functional
constraints. One of the salient features of this system is the grid-
based strategy for placing and growing rooms, which generates

building zones, followed by room areas, constrained by adjacency
and connectivity. Marson and Musse (2010) implement a squari-
fied treemap algorithm (previously used to represent hierarchical
information graphically) to compartmentalize the input space
into different zones or regions. These zones are organized into
a hierarchy that satisfies design goals and site constraints and
are visualized into a square tree map to generate various floor
layouts. Their work excels at building sophisticated circulation
networks. After the rooms are site located, a circulation network
graph is built to understand which rooms are connected or
disconnected from each other. They use an A* algorithm to
traverse the connectivity graph and find shortest paths to access
spaces from the lobby.

METHODOLOGY
The Space Plan Generator has distinct components orchestrated
to generate and analyze space plans. It generates layouts as
closed polylines representing each space type (either the depart-
ment or the program element), with the circulation network
represented as colored poly surfaces for any generic architectural
design problem.

Hierarchical Space Assignment
Our approach is hierarchical (see Figure 3). Program elements are
spaces to fit on the site. Certain types of program elements can
be clustered to form departments. The recursive algorithm first
places the department on site and then programs within depart-
ments, finally placing circulation within and between departments.

K-d Tree Data Structure
Our space-assignment algorithm uses a K-d data structure
dividing the K-d space by partition planes perpendicular to one
of the coordinate axes (see Figure 4). Conventionally, the median
or average of the point coordinates in the database is calculated
in the split dimension. Site space is the root and the first node
after the spatial split, dividing the point set in two. All points
whose coordinates are smaller than the split value reside in the
tree’s left branch, while the other points are relegated to the right
branch. This step is repeated until reaching a threshold depth of
the K-d tree. Each generated node is assigned a space or region,
each of which can contain child nodes (Bentley 1990). K-d Trees
efficiently search and traverse data sets to create spatial plan
partitions (Bentley 1975).

Space data trees implement a modified version of K-d data struc-
tures, where the point set is split by a line dividing a monolithic
space into two, using an algorithm to allocate program elements
at particular site locations. For example, a programmatic require-
ment to locate patient rooms on the site periphery or the need
of an entry lobby on the site’s west side. Any region on the site

Space Plan Generator Das, Day, Hauck, Haymaker, Davis

109 PROCEDURAL DESIGN

3	 Hierarchical space planning approach.

unassigned to a department or program element is termed a
‘container,’ while any region allocated to a department or program
is termed a ‘space.’ The root of the data tree is the container (the
site), with its left child the region of the site to the left of the
splitting line. The remaining region becomes the right child of the
root and the current container. The algorithm recursively repeats
the operation for each node until all spaces are stored in the
tree. After each split of the container, the left node becomes a
space node, and the right node becomes a container node. The
direction of the split can be flipped from horizontal to vertical
alignment at every iteration, similar to slice and dice techniques
(Shneiderman 1992), depending upon the aspect ratio of the
container and the program elements awaiting allocation.

Space and Container Node Data
After the split to represent site location, every space node
contains data including: Space Node ID, Parent Node ID, Left
Child Node ID, Right Child Node ID, Split Line, Department ID
Assigned, Cells Allocated, and Polyline representation.

Every container node retains data above except for Department ID.
As each node stores links to its parent and child nodes, the space
data tree can be traversed upwards and downwards (see Figure 4).

Benefits of using Space Data Tree:
•	 Provides fast and efficient data storage to represent spatial data.
•	 Supports nearest neighbor searches, which help build depart-

ment topology maps and appraise the efficiency of a layout
by representing department neighbors and adjacency.

•	 Finds neighbors for departments and program elements and
shared edges between them, with each Space and Container
Node storing the splitting line. Thus allows the computation
of circulation networks between and within departments.

•	 Can randomly ascertain circulation paths between any two
spatial locations in the space plan, aiding in space plan
appraisal through key metrics such as nurse travel routes
and distances, patient flow paths, fire egress routes, etc., in a
healthcare facility.

4	 Space Data Tree construction based on K-d data structure binary tree.

Splitting Strategies
We deployed several custom methods to split a polyline into two
or more by a dividing line, including:

•	 Split by Distance: Creates a splitting line from a given point on
a polyline by a specified distance or by a specified line orien-
tation. Returns two polylines on a successful split.

•	 Split by Ratio: Splits a polyline into two polylines by a supplied
ratio and direction.

•	 Split by Area: Ensures split polylines meet area requirements
as specified by the user or the algorithm, employing a brute
force splitting strategy by iteratively applying the split by
distance method, altering the distance variable after each
iteration.

•	 Split by Line: Requires the user or the algorithm to provide a
splitting line when there is an existing splitting line for further
splits.

•	 Split Recursively to meet Minimum Dimension: A recursive
split strategy adapted to split a single polyline into multiple
polylines until the minimum dimension of each polyline meets
an acceptable width or length constraint specified by the user.
Employing a slice and dice technique, after each split the
split direction is toggled between horizontal and vertical. This
strategy arrives at interesting spatial patterns with an accept-
able level of architectural rationality. The listed methods
divide the input site polyline into individual departments
containing program elements. Method outputs coupled with
department and program information are assigned to the
space data tree to organize them for further computation.

•	 Split by Offsetting Polyline Points: A computationally faster
strategy generates two polylines by shifting the points of the
parent polyline, avoiding more expensive algorithms such as
line-poly intersection or ordering points in a list to rebuild a
polyline as used in other split strategies.

Cell Grid Underneath the Spaces Assigned
From an input site outline, the system builds a bounding object
containing the site polyline (see Figure 5b). The algorithm

110

supplies the bounding box with points on an orthogonal grid,
with spacing specified by the user. A site outline test determines
the contained points used to build each cell. A collection of cells
is termed a grid object, employed to compute the shortest path
results between program elements, placement of doors and
windows, and similar problems. Grid objects are used to build the
cell neighbor matrix, which tracks the neighbors of every cell in
three dimensions. The benefit of such a matrix is in its capability
to efficiently traverse the site.

Cell Neighbor Matrix
Each cell in the grid object possesses a location ID. The neighbor
matrix of a cell is a list of lists, which stores identifiers of all
neighboring cells. Neighboring cells are traversed in a fixed order
of right, up, left, and down. A cell identified as 0 might have cells
05, 08, 02, 15 stored in its neighbor matrix row, with 05 identi-
fying the right-side cell, 08 denoting the upside cell, cell 02 on
the left side, with 15 identifying the downside cell. -1 indicates
a cell lacking any neighbors. The matrix provides a means to
traverse the site from one corner to another to find specific loca-
tions, such as doors and exit routes (see Figure 5a).

Cell Weighting for Specific Metrics
Each cell is given a custom weight to gauge different aspects
of the project, such as acoustic performance, daylighting, and
site constraints. Weighting influences the allocation of spatial
locations for a certain program. For example, if the northwest side

of the site is conducive for daylighting, then cell weights can be
increased for that zone to arrive at an appropriate distribution bias.

Shortest Path to Find Doors / Access Points
The cell neighbor matrix also helps find the shortest path
between site regions by implementing Dijkstra’s Algorithm (Wang
2012). Specific cells are marked as doors or windows, with the
objective of pathfinding to discover the shortest path to those
cells from a given program element.

Polyline Boundary
This algorithm finds the maximum sized orthogonal polyline
boundary of any input polyline having both orthogonal and
non-orthogonal angles between its sides (see Figure 6). To locate
the bounding polyline, the algorithm first identifies border cells
by traversing the cell neighbor matrix. A cell is identified as a
border cell if it’s either a corner cell with two neighbors or an
edge cell with three neighbors. The algorithm rebuilds the cell
neighbor matrix from the border cell, finds the lowest leftmost
cell in the border cell list, and subsequently traversesg the cells.
Initially, traversal attempts a rightward search, proceeding on
failure through successive tries up, left, and down. The centroid
of each visited cell is stored in a point list, and the cell is marked
as unavailable for further visits, preventing infinite search loops.
Upon traversing every cell, the complete centroid list will be used
to build the polyline boundary.

5	 (a) Shows Cell storage based on ID, Cell neighbor matrix, Cell weights to account for specific objectives. (b) Shows types of cells based on the number of neighbors they have.

Space Plan Generator Das, Day, Hauck, Haymaker, Davis

111 PROCEDURAL DESIGN

7	 Activity diagram showing Space Plan Generator’s working methodology.

Analyzer
In addition to the design generator, an analyzer component
validates the efficacy of the generated space plan with respect
to the original project goals. Some analysis types implemented
include gauging the percentage of program elements fitted to the
site outline in comparison to specified requirements, determining
the quantity of day-lit rooms with external views, and deter-
mining circulation efficiency. Please see Figure 7 to understand
the working methodology of SPG further.

IMPLEMENTATION
The prototype employs an Autodesk Dynamo Package written
in C# as a library of ‘zero touch’ custom nodes (Helsberg et
al. 2010), which helps construct the space plan generator as
explained below (see Figure 8). The Dynamo graph is composed
of two components, a ‘Generator’ and an ‘Analyzer.’ After every
graph evaluation, the ‘Generator’ yields distinct space plan
layouts rendered as a list of polyline geometries. The ‘Analyzer’

6	 Polygon Boundary algorithm showing the orthogonal boundary for any input
arbitrary site outline.

gauges the fitness of each design option to input goals and
constraints. The prototype proceeds as follows:

Step 1: User Inputs
The graph needs requirements in the form of a site outline ‘.sat’
file and program document ‘.csv’ file (see Figure 9). The ‘.csv’
should contain information for each program element to be
fit onto the site, with each element possessing the attributes,
namely: ID, name, department, quantity, area or dimension,
program, preference value, and adjacency list.

Preference value for each program element specifies the order
in which the element will be placed onto the site. The adjacency
list is a comparison chart to which the program and department
topology map will adhere while allocating program elements on
the site. Other user inputs include corridor width, the aspect ratio
for circulation and program elements, grid cell dimension, etc.

Step 2: Cell Grid Information
The graph builds the cell grid on the site and the initial cell
neighbor matrix, which are used repeatedly in the workflow
explained above.

Step 3: Data Stack
This step extracts input information from the program docu-
ment and builds a Department Data and Program Data class
object. The data stack node sorts and stores the department and
program data object based on the preference values from the

112

program document. Any computation or analysis regarding the
spatial assignment of program elements is done with the aid of
the data stack of departments and programs.

Step 4: Form Generation
The form maker node constructs the orthogonal building outline
for an arbitrary site outline (see Figure 10 and 11) traversing the
cell grid via the cell neighbor matrix, implementing two strategies
to pack programs.

Strategy 1: Function Follows Form
This strategy splits the orthogonal building outline into
sub-polylines until each polyline has exactly four sides, and
subsequently merges a random number of such four-sided
orthogonal polylines together to get the building form. One
advantage of this approach is that the user can set a percentage
of total site area for the building to occupy, resulting in building
perimeters of specific site coverage. The merge operation
employs the Polyline Boundary algorithm as explained above.

Strategy 2: Form Follows Function
Unlike Strategy 1, Strategy 2 develops the building outline while
placing department and program elements. After each depart-
ment polyline placement, the algorithm evaluates adherence
to site constraints and design requirements. The algorithm will
only proceed to subsequent departments after constraints and
requirements are satisfied or until reaching an allowed quantity
of trials. When area requirements are satisfied for programs and
departments, the algorithm discards any leftover waste space,

Space Plan Generator Das, Day, Hauck, Haymaker, Davis

8	 Current State of the Autodesk Dynamo Graph. Every node is a custom node,
written in C#.

9	 Requirements supplied to the graph via .csv program document.

10	 ‘Form Maker’ in the sequence of hierarchical space planning approach to
generate architecturally rationale space plans.

11	 Form maker in action placing colored poly surfaces as individual departments.

12	 (a) Shows the Dept. Analytics node highlighting area, cells, and programs for
all four departments. (b) Shows the area percentage desired and achieved in
relation to other departments for all four departments.

8

9

10

113 PROCEDURAL DESIGN

merging the outer lines of the department polylines to arrive at
the final building outline.

For both of the strategies, custom functions remove single or
multiple notches from the building outline using minimum edge
distance, thus refining the building form and increasing the
number of design choices for the user.

Step 5: Department Placement and K-d Space Data Tree for
Department
This step assigns departments to the site based on preference
values from the user and simultaneously builds the space data
tree. The iterative process is appropriately integrated with the
form maker from the previous step, depending upon which form-
making strategies are adopted and how well design goals and
constraints are satisfied.

Step 6: Program Placement
This step assigns program elements inside each department, as
prioritized by user goals, and updates the grid object by assigning
each cell a certain program type and updating each cell’s weight.

Step 7: Circulation Computation
Circulation computation discovers circulation networks between
departments and subsequently finds circulation networks

between program elements by using K-d data structure refer-
enced above. Shared edges between departments and program
elements form the initial circulation network. Next, a circulation
redundancy check, with the aid of the grid object, is deployed
to select only those edges in the network needed to access all
spaces. Further, it employs pathfinding algorithms with the aid of
cell neighbor matrix to discover the shortest paths within avail-
able circulation pathways between points, and places doors and
windows along the discovered path. Grid Object also accounts
for those spaces which do not get any access and places addi-
tional network lines to render them accessible from the main
public space in the layout (Mirahmadi and Shami 2012).

Step 8: Space Plan Analytics
Evaluates the generated design based on metrics as summarized
above (see Figure 12).

Step 9: Space Plan Output / Geometry Rendering
One of the salient features of the SPG is that it maintains a
distinction between geometry and computation, with geometry
only rendered at the process conclusion for visualization (see
Figures 13a and 13b). Until step 8, no geometry is rendered
on screen or temporarily saved in memory, which significantly
speeds the production of results. Since geometry is not used
before this step, custom methods are included in determining
line intersections and line/polygon intersections, removal of
duplicate geometries, determine point containment, merge
polylines, etc., and made available as ‘zero touch’ Dynamo nodes.

Step 10: Storing and Scoring Generated Designs
Generated designs are stored as a collection of cells, where each
cell stores information about its assigned program or department.
Cells store space plan analytic information, such as distance to
external windows, visibility of the cell from circulation areas, etc.,
and these metrics help determine the overall scored success of
a space plan. Scoring conveys to the user the success of design
options relative to input goals and constraints (see Figure 1).

USE CASE AND RESULTS
The prototype is being tested on a new hospital bed tower to
be built on an existing healthcare facility site which includes an
existing bed tower and hospital facility (see Figure 14). With site
constraints and specific client goals, such as maximizing patient
beds per floor, employing new hospital facility design guidelines
and building codes, minimizing nurse travel distance (Rechel,
James, and Martin 2009), maximizing connectivity to the existing
hospital, and minimizing view impedance from the existing bed
tower, this project is a valuable test case to understand how a
goal-driven design workflow can be automated using generative
design strategies. The current state of the Dynamo package

11

12

114

restricts designs to a single floor as a limited case to ensure
stability and reliability before being implemented for multiple floors.

At present, the system is capable of generating, scoring, and
analyzing design options each time the user adjusts a slider
within the graph. Currently, each space plan is scored with
respect to the percentage of program elements placed in
comparison to program document requirements, the number
of patient rooms with access to external views and daylighting,
nurse travel distance to all patient rooms, and percentage
number of Key Planning Units (inpatient patient beds in this
case). Metrics are user-weighted, allowing architects to seek
design solutions for project goals. We plan to couple the

generator with Genetic Algorithm (GA) optimization to improve
design candidates by learning from each iteration to reach
optimal floor layouts, as driven by project goals.

CONCLUSION
Though this is not the first attempt to use generative design
strategies to develop space plans, this research leverages
efficient data structures, coupled with robust, scalable algo-
rithms from computational geometry and generative design, to
deliver rational architectural space plans. Building the system
on Autodesk Dynamo allows a large number of users to benefit
from the system. Separating geometry and computation
significantly improved system performance, allowing iterative
solution searches to arrive at satisfactory results. Nevertheless,
we recognize current system limitations such as an inability to
handle non-orthogonal or curved spaces, as well as an inability to
distribute spaces on multiple levels, but we plan to address these
shortcomings. Currently, the system generates design options
without learning from its previous iterations, sometimes leading
to architecturally inadequate proposals. We envision surpassing
this limitation when the generator is coupled with genetic algo-
rithm optimization in future work.

REFERENCES
Becker, S., M. Peter, D. Fritsch, D. Phillip, P. Baier, and C. Dibak. 2013.

“Combined Grammar for the Modeling of Building Interiors.” ISPRS Annals

13	 (a) Generated Space Plan Layouts after using ‘Form Maker’ based on set ground coverage. (b) Space Plan Layouts without using ‘Form Maker’ filling the whole site space
with program elements.

14	 Concept forms generated manually by the design team. Top left shows modular
patient room for the case study Hospital Bed Tower.

Space Plan Generator Das, Day, Hauck, Haymaker, Davis

115 PROCEDURAL DESIGN

of the Photogrammetry, Remote Sensing and Spatial Information Sciences

II–4 W1: 1–6.

Bentley, Jon Louis, and Jerome H. Friedman. 1979. “Data Structures for

Range Searching.” ACM Computing Surveys 11 (4): 397–409.

Bentley, Jon Louis. 1975. “Multidimensional Binary Search Trees Used for

Associative Searching.” Communications of the ACM 18 (9): 509–517.

———. 1990. “K-d trees for semidynamic point sets.” In Proceedings of the

Sixth Annual Symposium on Computational Geometry. Berkeley, CA: SOCG.

187–197.

Boon, Christopher, Corey Griffin, Nicholas Papaefthimious, Jonah Ross,

and Kip Storey. 2015. “Optimizing Spatial Adjacencies using Evolutionary

Parametric Tools: Using Grasshopper and Galapagos to Analyze, Visualize,

and Improve Complex Architectural Programming.” Perkins + Will Research

Journal 7 (2): 25–37.

Das, Subhajit, John Haymaker, and Chuck Eastman. 2015. “Data Model

and Processes for Building Programming.” Atlanta: Georgia Tech Digital

Building Lab. http://www.dbl.gatech.edu/node/15402

Eastman, Charles. 1970. “Automated Space Planning.” Communications of

the ACM 13 (4): 242–250.

Helsberg, Anders, Mads Torgersen, Scott Wiltamuth, and Peter Golde.

2010. C# Programming Language. Boston, MA: Addison-Wesley

Professional.

Hicks, Chris, Tom McGovern, Gary Prior, and Iain Smith. 2015. “Applying

Lean Principles to the Design of Healthcare Facilities.” International Journal

of Production Economics 170 (Part B): 677–686.

Jo, Jun H., and John S. Gero. 1998. “Space Layout Planning Using an

Evolutionary Approach.” Artificial Intelligence in Engineering 12 (3): 149–162.

Knecht, Katja, and Reinhard König. 2010. “Generating Floor Plan Layouts

with K-d Trees and Evolutionary Algorithms.” Proceedings of the 13th

International Conference on Generative Art. Milan: GA. 238–253.

Liggett, Robert S. 2000. “Automated Facilities Layout: Past, Present and

Future.” Automation in Construction 9 (2): 197–215.

Lopes, Ricardo, Tim Tutenel, Ruben M. Smelik, Klaas Jan de Kraker, and

Rafael Bidarra. 2010. “A Constrained Growth Method for Procedural

Floor Plan Generation.” In Proceedings of GAMEON. Leicester, UK:

EUROSIS. 13–22.

Marson, Fernando, and Soraia Raupp Musse. 2010. “Automatic Real-

Time Generation of Floor Plans Based on Squarified Treemaps Algorithm.”

International Journal of Computer Games Technology 2010 (7): 10.

Michaleka, Jeremy, Ruchi Choudhury, and Panos Papalambrosa. 2002.

“Architectural Layout Design Optimization.” Engineering Optimization 34

(5): 461–484.

Mirahmadi, Maysam, and Abdallah Shami. 2012. “A Novel Algorithm

for Real-time Procedural Generation of Building Floor Plans.”

arXiv:1211.5842v1

Nassar, Khaled. 2010. “New Advances in the Automated Architectural

Space Plan Layout Problem.” In Proceedings of the International Conference

In Computing in Civil and Building Engineering, edited by Walid Tizani.

Nottingham, UK: ICCBE.

Rechel, Bernd, Buchen James, and Mckee Martin. 2009. “The Impact of

Health Facilities on Healthcare Workers’ Well-Being and Performance.”

International Journal of Nursing Studies 46 (7): 1025–1034.

Shneiderman, Ben. 1992. “Tree visualization with tree maps : 2-d space-

filling approach.” ACM Transactions on Graphics (TOG) 11 (1): 92–99.

Wang, Shu-Xi. 2012. “The Improved Dijkstra’s Shortest Path Algorithm

and Its Application.” Procedia Engineering 29: 1186–1190.

Subhajit Das has a diverse background in Architecture and Computer

Science, with degrees in M Arch Design Computing (University of

Pennsylvania) and MS in Computer Science (Georgia Tech). Being part

of the Autodesk Generative Design group, Subhajit was instrumental

to collaborating with Perkins+Will Healthcare Design team to steer this

research forward. Currently, he is pursuing a PhD in Computer Science

at Georgia Tech with core interests in Machine Learning, Graphics, and

Visual Analytics.

Colin Day is a Principal Engineer in the Autodesk Generative Design

Group, with years of experience in the development and implementation

of algorithms in Computational Design and Computer Graphics.

Anthony Hauck joined the Autodesk Revit team in 2007, holding a

succession of product management positions in the group until joining

Autodesk AEC Generative Design in 2015 as its Director of Product

Strategy, where he is responsible for helping define the next generation

of building software products and services for the AEC industry.

John Haymaker, PhD, AIA, LEED AP serves as Perkins+Will’s Director of

Research, overseeing areas of inquiry including materials, design process,

building technology, and healthcare practices. Previously a Professor of

Civil Engineering at Stanford University, and at Georgia Tech, John has

contributed over 80 articles to professional literature in the areas of

design process communication, optimization, and decision-making.

Diana Davis has over 18 years of experience in the design, planning,

and delivery of healthcare projects. She brings a special interest in Lean

planning and evidence-based design to her work, paired with a commit-

ment to improving the healthcare environment for caregivers, patients,

and families. She is mentoring graduate level researchers at the Georgia

Institute of Technology and Autodesk in the development of new digital

tools to aid healthcare planning and design.

	Table of Contents
	Foreword | Complex Entanglements
	Introduction | Posthuman Frontiers
	Procedural Design
	Gerber | A Multi-Agent System for Facade Design
	Savov | 20,000 Blocks
	Johnson | Architectural Heat Maps
	Sanchez | Combinatorial design
	Andréen | Emergent Structures Assembled by Large Swarms of Simple Robots
	Rusenova | Feedback- and Data-driven Design
	Harrison | What Bricks Want
	Parker | Form-Making in SIFT Imaged Environments
	Klemmt | Load Responsive Angiogenesis Networks
	Smith | Machine Learning Integration for Adaptive Building Envelopes
	Das | Space Plan Generator
	Davis | Evaluating Buildings with Computation and Machine Learning
	Ferrarello | The Tectonic of the Hybrid Real
	Koschitz | Beetle Blocks
	Nejur | Ivy

	Generative Robotics
	Brugnaro | Robotic Softness
	Braumann | Towards New Robotic Design Tools
	Moorman | RoboSense
	Vasey | Collaborative Construction
	Yuan | Robotic Fabrication of Structural Performance-based Timber Grid-shell
	Devadass | Robotic Fabrication of Non-Standard Material
	Schwartz | Use of a Low-Cost Humanoid for Tiling as a Study in On-Site Fabrication
	Schwinn | Robotic Sewing

	Programmable Matter
	Pineda | The Grammar of Crystallographic Expression
	Ramirez-Figueroa | Bacterial Hygromorphs
	Sharmin | Knit Architecture
	Schleicher | Bending-Active Plates
	�Körner | Bio-Inspired Kinetic Curved-Line Folding for Architectural Applications
	Ramsgaard Thomsen | Knit as bespoke material practice for architecture
	Wang | Pneumatic Textile System
	Yu | Highly Informed Robotic 3D Printed Polygon Mesh
	Nicholas | Concepts and Methodologies for Multiscale Modeling
	Huang | From Bones to Bricks
	Wit | Composite Systems for Lightweight Architectures
	Retsin | Discrete Computational Methods for Robotic Additive Manufacturing

	Posthuman Engagements
	Leach | Digital Tool Thinking
	Farahi | Caress of the Gaze
	Beesley | Hybrid Sentient Canopy
	Costa Maia | Researching Inhabitant Agency in Interactive Architecture
	López | Human Touch in Digital Fabrication
	Eisinger | Formeta:3D
	Pinochet | Antithetical Colloquy

	Material Frontiers
	Tabbarah | Almost Natural Shelter
	Twose | Experimental Material Research
	Beaman | Landscapes After The Bifurcation of Nature
	Clifford | The McKnelly Megalith
	Estévez | Towards Genetic Posthuman Frontiers in Architecture & Design
	Dade-Robertson | Thinking Soils
	Sollazzo | Symbiotic Associations
	Franzke | Fluid Morphologies
	Derme | Growth Based Fabrication Techniques for Bacterial Cellulose

	ACADIA 2016 Credits
	Conference Chairs
	Session Moderators
	ACADIA Organization
	Conference Management & Production Credits
	Peer Review Committee
	ACADIA 2016 Sponsors

