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ABSTRACT
Design exploration in architectural space planning is often constrained by tight deadlines and 
a need to apply necessary expertise at the right time. We hypothesize that a system that can 
computationally generate vast numbers of design options, respect project constraints, and analyze 
for client goals, can assist the design team and client to make better decisions. This paper explains 
a research venture built from insights into space planning from senior planners, architects, and 
experts in the field, coupled with algorithms for evolutionary systems and computational geometry, 
to develop an automated computational framework that enables rapid generation and analysis 
of space plan layouts. The system described below automatically generates hundreds of design 
options from inputs typically provided by an architect, including a site outline and program docu-
ment with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this 
workflow can clarify project goals early in the design process, save time, enable better resource allo-
cation, and assist key stakeholders to make informed decisions and deliver better designs. Further, 
the system is tested on a case study healthcare design project with set goals and objectives.
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INTRODUCTION 
Design teams work under schedule and resource constraints that 
limit the range of design solutions they can generate and analyze, 
impeding informed design and optimal decision making. We 
have surveyed building guidelines, codes, facility-planning rules, 
literature, and case studies, and conducted interviews with senior 
professional medical planners and architects to understand 
industry best practices and acceptable design methodologies 
(Das, Haymaker, and Eastman 2015). This work clarified the 
implicit and explicit domain knowledge and processes in space 
planning and identified opportunities to leverage computation for 
repetitive design generation and analysis tasks, liberating archi-
tects to invest time in problem formulation and decision making.

In this paper, we present Space Plan Generator (SPG), an 
emerging methodology and tool to automate aspects of architec-
tural design. We first briefly describe foundational work in data 
structures and space-planning methodologies, then explain the 
working methodology of SPG (see Figure 2) by describing the 
Hierarchical Space Assignment strategy, a top-down approach 
from whole to part, and the K-dimensional (K-d) Tree Data 
Structure, which showcases an efficient data storage, retrieval, 
and traversal technique. Next, we discuss the splitting strategy to 
assign departments and programs to the site, and the imple-
mentation of a cell grid that enables circulation computation 
with analysis and scoring of the generated space plans. We then 
describe the implementation of the methodology in Autodesk 
Dynamo, and the testing of its the validity and efficacy within a 
healthcare facility case study from a large architectural practice.

2	 Activity diagram showing SPG and architect together in a design process. 

RELATED WORKS 
TreeMap Data Structure 
Architectural design is a process necessitating multiple iterations 
until design goals are achieved. Consequently, we have imple-
mented a data structure which can rapidly access identical data 
multiple times and store spatial data in a manner supporting 
nearest neighbor search, which is necessary to build department 
and program topology maps for design fitness appraisal. Owing 
to its spatial partitioning structure, K-d tree serves our purposes 
by using nested elements to store data. Nested elements provide 
a means to retrieve data through bidirectional traversal, top 
down and bottom up.

K-d trees store and organize data as a set of ‘n’ points in a 
multi-dimensional space, in a structure of a binary search and 
partitioning trees. Due to their efficiency and speed, they are 
primarily applied to nearest-neighbor queries, search algorithms, 
database applications, and ray-trace methods. Originating in 
computational geometry, their efficiency arises from the space 
partitioning algorithm organizing objects in K-d space (Knecht 
and König 2010). Average running time of an ‘n’ data point 
database for:

•	 Insertion – O(log n);
•	 Deletion of root – O(n(k-1)/k)
•	 Deletion of any random node – O (log n) (Bentley 1975).
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Space Plan Generation
Eastman (1972) automated space generation in two dimensions 
by implementing decision rules to guide subsequent place-
ment and arrangement of design units. These rules were driven 
by operators that transformed the state of the design units 
iteratively to satisfy a set of relationships between them. Jo and 
Gero (1998) highlighted an evolutionary-design model describing 
a schema to represent design knowledge capable of providing 
design solutions for the given problem requirement. Their work 
highlighted topological and geometrical arrangements of spatial 
elements tested on a large office layout problem. Though not 
many variations of the spatial arrangement were highlighted, their 
work showed the robustness of coupling genetic algorithm-based 
searches with design workflows to produce good results in 
space planning. Michalek, Choudhury, and Papalambrosa (2002) 
presented an optimization model integrating optimization and 
subjective decision making during conceptual design. Coupling 
gradient-based algorithms and evolutionary algorithms, they 
innovated to include human decision making in the workflow. 
They implemented topology optimization algorithms on top of 
geometry optimization algorithms. The results were automated 
space plans but limited in variation. Nassar (2010) presented 
new findings in graph theory with direct implications in space 
planning problems. He described architectural space plans as 
simple, connected, labeled planar graphs, and elaborated on the 
relevance of finding a rectangle dual for every planar graph to 
increase solution space. This work outlined a tool for architects 
to generate space plans. Realizing spatial relationships as planar 
graphs with nodes as rooms and edges as adjacencies, it claimed 
that the proposed model could provide a truly exhaustive set of 
potential designs. However, this model was limited to two-di-
mensional space plans only. 

Boon et al. (2015) employed genetic algorithms to generate 3D 
space stacking, respecting input adjacency requirements by the 
user. Their algorithm evaluates space plans based on adjacency 
constraints to minimize the total distance of all interconnected 
programmatic elements. They prioritized the program spaces 
based on practice expertise and user input, which helps discard 
unrealistic design solutions. The algorithm stacks spaces in three 
dimensions, distributing program elements over multiple floors and 
sometimes unnecessarily complicating architectural space layouts. 

Some relevant research in automated space plan generation 
comes from game design, which requires extensive 3D environ-
ments at architectural scale. Lopes et.al (2010) generate floor 
plans for different classes of buildings, many with connected 
floor levels, offering limited control to the designer for functional 
constraints. One of the salient features of this system is the grid-
based strategy for placing and growing rooms, which generates 

building zones, followed by room areas, constrained by adjacency 
and connectivity. Marson and Musse (2010) implement a squari-
fied treemap algorithm (previously used to represent hierarchical 
information graphically) to compartmentalize the input space 
into different zones or regions. These zones are organized into 
a hierarchy that satisfies design goals and site constraints and 
are visualized into a square tree map to generate various floor 
layouts. Their work excels at building sophisticated circulation 
networks. After the rooms are site located, a circulation network 
graph is built to understand which rooms are connected or 
disconnected from each other. They use an A* algorithm to 
traverse the connectivity graph and find shortest paths to access 
spaces from the lobby. 

METHODOLOGY 
The Space Plan Generator has distinct components orchestrated 
to generate and analyze space plans. It generates layouts as 
closed polylines representing each space type (either the depart-
ment or the program element), with the circulation network 
represented as colored poly surfaces for any generic architectural 
design problem.

Hierarchical Space Assignment
Our approach is hierarchical (see Figure 3). Program elements are 
spaces to fit on the site. Certain types of program elements can 
be clustered to form departments. The recursive algorithm first 
places the department on site and then programs within depart-
ments, finally placing circulation within and between departments. 

K-d Tree Data Structure
Our space-assignment algorithm uses a K-d data structure 
dividing the K-d space by partition planes perpendicular to one 
of the coordinate axes (see Figure 4). Conventionally, the median 
or average of the point coordinates in the database is calculated 
in the split dimension. Site space is the root and the first node 
after the spatial split, dividing the point set in two. All points 
whose coordinates are smaller than the split value reside in the 
tree’s left branch, while the other points are relegated to the right 
branch. This step is repeated until reaching a threshold depth of 
the K-d tree. Each generated node is assigned a space or region, 
each of which can contain child nodes (Bentley 1990). K-d Trees 
efficiently search and traverse data sets to create spatial plan 
partitions (Bentley 1975).

Space data trees implement a modified version of K-d data struc-
tures, where the point set is split by a line dividing a monolithic 
space into two, using an algorithm to allocate program elements 
at particular site locations. For example, a programmatic require-
ment to locate patient rooms on the site periphery or the need 
of an entry lobby on the site’s west side. Any region on the site 
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3	 Hierarchical space planning approach.

unassigned to a department or program element is termed a 
‘container,’ while any region allocated to a department or program 
is termed a ‘space.’ The root of the data tree is the container (the 
site), with its left child the region of the site to the left of the 
splitting line. The remaining region becomes the right child of the 
root and the current container. The algorithm recursively repeats 
the operation for each node until all spaces are stored in the 
tree. After each split of the container, the left node becomes a 
space node, and the right node becomes a container node. The 
direction of the split can be flipped from horizontal to vertical 
alignment at every iteration, similar to slice and dice techniques 
(Shneiderman 1992), depending upon the aspect ratio of the 
container and the program elements awaiting allocation.

Space and Container Node Data
After the split to represent site location, every space node 
contains data including: Space Node ID, Parent Node ID, Left 
Child Node ID, Right Child Node ID, Split Line, Department ID 
Assigned, Cells Allocated, and Polyline representation.

Every container node retains data above except for Department ID. 
As each node stores links to its parent and child nodes, the space 
data tree can be traversed upwards and downwards (see Figure 4).

Benefits of using Space Data Tree:
•	 Provides fast and efficient data storage to represent spatial data.
•	 Supports nearest neighbor searches, which help build depart-

ment topology maps and appraise the efficiency of a layout 
by representing department neighbors and adjacency. 

•	 Finds neighbors for departments and program elements and 
shared edges between them, with each Space and Container 
Node storing the splitting line. Thus allows the computation 
of circulation networks between and within departments.

•	 Can randomly ascertain circulation paths between any two 
spatial locations in the space plan, aiding in space plan 
appraisal through key metrics such as nurse travel routes 
and distances, patient flow paths, fire egress routes, etc., in a 
healthcare facility.

4	 Space Data Tree construction based on K-d data structure binary tree.

Splitting Strategies
We deployed several custom methods to split a polyline into two 
or more by a dividing line, including: 

•	 Split by Distance: Creates a splitting line from a given point on 
a polyline by a specified distance or by a specified line orien-
tation. Returns two polylines on a successful split.

•	 Split by Ratio: Splits a polyline into two polylines by a supplied 
ratio and direction.

•	 Split by Area: Ensures split polylines meet area requirements 
as specified by the user or the algorithm, employing a brute 
force splitting strategy by iteratively applying the split by 
distance method, altering the distance variable after each 
iteration.

•	 Split by Line: Requires the user or the algorithm to provide a 
splitting line when there is an existing splitting line for further 
splits.

•	 Split Recursively to meet Minimum Dimension: A recursive 
split strategy adapted to split a single polyline into multiple 
polylines until the minimum dimension of each polyline meets 
an acceptable width or length constraint specified by the user. 
Employing a slice and dice technique, after each split the 
split direction is toggled between horizontal and vertical. This 
strategy arrives at interesting spatial patterns with an accept-
able level of architectural rationality. The listed methods 
divide the input site polyline into individual departments 
containing program elements. Method outputs coupled with 
department and program information are assigned to the 
space data tree to organize them for further computation.

•	 Split by Offsetting Polyline Points: A computationally faster 
strategy generates two polylines by shifting the points of the 
parent polyline, avoiding more expensive algorithms such as 
line-poly intersection or ordering points in a list to rebuild a 
polyline as used in other split strategies.

 
Cell Grid Underneath the Spaces Assigned
From an input site outline, the system builds a bounding object 
containing the site polyline (see Figure 5b). The algorithm 
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supplies the bounding box with points on an orthogonal grid, 
with spacing specified by the user. A site outline test determines 
the contained points used to build each cell. A collection of cells 
is termed a grid object, employed to compute the shortest path 
results between program elements, placement of doors and 
windows, and similar problems. Grid objects are used to build the 
cell neighbor matrix, which tracks the neighbors of every cell in 
three dimensions. The benefit of such a matrix is in its capability 
to efficiently traverse the site.

Cell Neighbor Matrix
Each cell in the grid object possesses a location ID. The neighbor 
matrix of a cell is a list of lists, which stores identifiers of all 
neighboring cells. Neighboring cells are traversed in a fixed order 
of right, up, left, and down. A cell identified as 0 might have cells 
05, 08, 02, 15 stored in its neighbor matrix row, with 05 identi-
fying the right-side cell, 08 denoting the upside cell, cell 02 on 
the left side, with 15 identifying the downside cell. -1 indicates 
a cell lacking any neighbors. The matrix provides a means to 
traverse the site from one corner to another to find specific loca-
tions, such as doors and exit routes (see Figure 5a).

Cell Weighting for Specific Metrics
Each cell is given a custom weight to gauge different aspects 
of the project, such as acoustic performance, daylighting, and 
site constraints. Weighting influences the allocation of spatial 
locations for a certain program. For example, if the northwest side 

of the site is conducive for daylighting, then cell weights can be 
increased for that zone to arrive at an appropriate distribution bias.

Shortest Path to Find Doors / Access Points
The cell neighbor matrix also helps find the shortest path 
between site regions by implementing Dijkstra’s Algorithm (Wang 
2012). Specific cells are marked as doors or windows, with the 
objective of pathfinding to discover the shortest path to those 
cells from a given program element. 

Polyline Boundary
This algorithm finds the maximum sized orthogonal polyline 
boundary of any input polyline having both orthogonal and 
non-orthogonal angles between its sides (see Figure 6). To locate 
the bounding polyline, the algorithm first identifies border cells 
by traversing the cell neighbor matrix. A cell is identified as a 
border cell if it’s either a corner cell with two neighbors or an 
edge cell with three neighbors. The algorithm rebuilds the cell 
neighbor matrix from the border cell, finds the lowest leftmost 
cell in the border cell list, and subsequently traversesg the cells. 
Initially, traversal attempts a rightward search, proceeding on 
failure through successive tries up, left, and down. The centroid 
of each visited cell is stored in a point list, and the cell is marked 
as unavailable for further visits, preventing infinite search loops. 
Upon traversing every cell, the complete centroid list will be used 
to build the polyline boundary.

5	 (a) Shows Cell storage based on ID, Cell neighbor matrix, Cell weights to account for specific objectives. (b) Shows types of cells based on the number of neighbors they have.
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7	 Activity diagram showing Space Plan Generator’s working methodology.

Analyzer
In addition to the design generator, an analyzer component 
validates the efficacy of the generated space plan with respect 
to the original project goals. Some analysis types implemented 
include gauging the percentage of program elements fitted to the 
site outline in comparison to specified requirements, determining 
the quantity of day-lit rooms with external views, and deter-
mining circulation efficiency. Please see Figure 7 to understand 
the working methodology of SPG further.

IMPLEMENTATION 
The prototype employs an Autodesk Dynamo Package written 
in C# as a library of ‘zero touch’ custom nodes (Helsberg et 
al. 2010), which helps construct the space plan generator as 
explained below (see Figure 8). The Dynamo graph is composed 
of two components, a ‘Generator’ and an ‘Analyzer.’ After every 
graph evaluation, the ‘Generator’ yields distinct space plan 
layouts rendered as a list of polyline geometries. The ‘Analyzer’ 

6	 Polygon Boundary algorithm showing the orthogonal boundary for any input 
arbitrary site outline.

gauges the fitness of each design option to input goals and 
constraints. The prototype proceeds as follows: 

Step 1: User Inputs
The graph needs requirements in the form of a site outline ‘.sat’ 
file and program document ‘.csv’ file (see Figure 9). The ‘.csv’ 
should contain information for each program element to be 
fit onto the site, with each element possessing the attributes, 
namely: ID, name, department, quantity, area or dimension, 
program, preference value, and adjacency list. 

Preference value for each program element specifies the order 
in which the element will be placed onto the site. The adjacency 
list is a comparison chart to which the program and department 
topology map will adhere while allocating program elements on 
the site. Other user inputs include corridor width, the aspect ratio 
for circulation and program elements, grid cell dimension, etc.

Step 2: Cell Grid Information
The graph builds the cell grid on the site and the initial cell 
neighbor matrix, which are used repeatedly in the workflow 
explained above.

Step 3: Data Stack
This step extracts input information from the program docu-
ment and builds a Department Data and Program Data class 
object. The data stack node sorts and stores the department and 
program data object based on the preference values from the 
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program document. Any computation or analysis regarding the 
spatial assignment of program elements is done with the aid of 
the data stack of departments and programs.

Step 4: Form Generation
The form maker node constructs the orthogonal building outline 
for an arbitrary site outline (see Figure 10 and 11) traversing the 
cell grid via the cell neighbor matrix, implementing two strategies 
to pack programs.

Strategy 1: Function Follows Form
This strategy splits the orthogonal building outline into 
sub-polylines until each polyline has exactly four sides, and 
subsequently merges a random number of such four-sided 
orthogonal polylines together to get the building form. One 
advantage of this approach is that the user can set a percentage 
of total site area for the building to occupy, resulting in building 
perimeters of specific site coverage. The merge operation 
employs the Polyline Boundary algorithm as explained above. 

Strategy 2: Form Follows Function
Unlike Strategy 1, Strategy 2 develops the building outline while 
placing department and program elements. After each depart-
ment polyline placement, the algorithm evaluates adherence 
to site constraints and design requirements. The algorithm will 
only proceed to subsequent departments after constraints and 
requirements are satisfied or until reaching an allowed quantity 
of trials. When area requirements are satisfied for programs and 
departments, the algorithm discards any leftover waste space, 

Space Plan Generator Das, Day, Hauck, Haymaker, Davis

8	 Current State of the Autodesk Dynamo Graph. Every node is a custom node, 
written in C#.

9	  Requirements supplied to the graph via .csv program document.

10	 ‘Form Maker’ in the sequence of hierarchical space planning approach to 
generate architecturally rationale space plans.

11	 Form maker in action placing colored poly surfaces as individual departments.

12	 (a) Shows the Dept. Analytics node highlighting area, cells, and programs for 
all four departments. (b) Shows the area percentage desired and achieved in 
relation to other departments for all four departments.

8

9

10
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merging the outer lines of the department polylines to arrive at 
the final building outline. 

For both of the strategies, custom functions remove single or 
multiple notches from the building outline using minimum edge 
distance, thus refining the building form and increasing the 
number of design choices for the user.

Step 5: Department Placement and K-d Space Data Tree for 
Department
This step assigns departments to the site based on preference 
values from the user and simultaneously builds the space data 
tree. The iterative process is appropriately integrated with the 
form maker from the previous step, depending upon which form-
making strategies are adopted and how well design goals and 
constraints are satisfied.

Step 6: Program Placement
This step assigns program elements inside each department, as 
prioritized by user goals, and updates the grid object by assigning 
each cell a certain program type and updating each cell’s weight.

Step 7: Circulation Computation
Circulation computation discovers circulation networks between 
departments and subsequently finds circulation networks 

between program elements by using K-d data structure refer-
enced above. Shared edges between departments and program 
elements form the initial circulation network. Next, a circulation 
redundancy check, with the aid of the grid object, is deployed 
to select only those edges in the network needed to access all 
spaces. Further, it employs pathfinding algorithms with the aid of 
cell neighbor matrix to discover the shortest paths within avail-
able circulation pathways between points, and places doors and 
windows along the discovered path. Grid Object also accounts 
for those spaces which do not get any access and places addi-
tional network lines to render them accessible from the main 
public space in the layout (Mirahmadi and Shami 2012).

Step 8: Space Plan Analytics
Evaluates the generated design based on metrics as summarized 
above (see Figure 12).

Step 9: Space Plan Output / Geometry Rendering
One of the salient features of the SPG is that it maintains a 
distinction between geometry and computation, with geometry 
only rendered at the process conclusion for visualization (see 
Figures 13a and 13b). Until step 8, no geometry is rendered 
on screen or temporarily saved in memory, which significantly 
speeds the production of results. Since geometry is not used 
before this step, custom methods are included in determining 
line intersections and line/polygon intersections, removal of 
duplicate geometries, determine point containment, merge 
polylines, etc., and made available as ‘zero touch’ Dynamo nodes.

Step 10: Storing and Scoring Generated Designs
Generated designs are stored as a collection of cells, where each 
cell stores information about its assigned program or department. 
Cells store space plan analytic information, such as distance to 
external windows, visibility of the cell from circulation areas, etc., 
and these metrics help determine the overall scored success of 
a space plan. Scoring conveys to the user the success of design 
options relative to input goals and constraints (see Figure 1).

USE CASE AND RESULTS 
The prototype is being tested on a new hospital bed tower to 
be built on an existing healthcare facility site which includes an 
existing bed tower and hospital facility (see Figure 14). With site 
constraints and specific client goals, such as maximizing patient 
beds per floor, employing new hospital facility design guidelines 
and building codes, minimizing nurse travel distance (Rechel, 
James, and Martin 2009), maximizing connectivity to the existing 
hospital, and minimizing view impedance from the existing bed 
tower, this project is a valuable test case to understand how a 
goal-driven design workflow can be automated using generative 
design strategies. The current state of the Dynamo package 

11
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restricts designs to a single floor as a limited case to ensure 
stability and reliability before being implemented for multiple floors. 

At present, the system is capable of generating, scoring, and 
analyzing design options each time the user adjusts a slider 
within the graph. Currently, each space plan is scored with 
respect to the percentage of program elements placed in 
comparison to program document requirements, the number 
of patient rooms with access to external views and daylighting, 
nurse travel distance to all patient rooms, and percentage 
number of Key Planning Units (inpatient patient beds in this 
case). Metrics are user-weighted, allowing architects to seek 
design solutions for project goals. We plan to couple the 

generator with Genetic Algorithm (GA) optimization to improve 
design candidates by learning from each iteration to reach 
optimal floor layouts, as driven by project goals. 

CONCLUSION 
Though this is not the first attempt to use generative design 
strategies to develop space plans, this research leverages 
efficient data structures, coupled with robust, scalable algo-
rithms from computational geometry and generative design, to 
deliver rational architectural space plans. Building the system 
on Autodesk Dynamo allows a large number of users to benefit 
from the system. Separating geometry and computation 
significantly improved system performance, allowing iterative 
solution searches to arrive at satisfactory results. Nevertheless, 
we recognize current system limitations such as an inability to 
handle non-orthogonal or curved spaces, as well as an inability to 
distribute spaces on multiple levels, but we plan to address these 
shortcomings. Currently, the system generates design options 
without learning from its previous iterations, sometimes leading 
to architecturally inadequate proposals. We envision surpassing 
this limitation when the generator is coupled with genetic algo-
rithm optimization in future work.
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